二百二十九、离线数仓——离线数仓Hive从Kafka、MySQL到ClickHouse的完整开发流程

一、目的

为了整理离线数仓开发的全流程,算是温故知新吧

离线数仓的数据源是Kafka和MySQL数据库,Kafka存业务数据,MySQL存维度数据

采集工具是Kettle和Flume,Flume采集Kafka数据,Kettle采集MySQL数据

离线数仓是Hive

目标数据库是ClickHouse

任务调度器是海豚

二、数据采集

(一)Flume采集Kafka数据

1、Flume配置文件

## agent a1
a1.sources = s1
a1.channels = c1
a1.sinks = k1

## configure source s1
a1.sources.s1.type = org.apache.flume.source.kafka.KafkaSource
a1.sources.s1.kafka.bootstrap.servers = 192.168.0.27:9092
a1.sources.s1.kafka.topics = topic_b_queue
a1.sources.s1.kafka.consumer.group.id = queue_group
a1.sources.s1.kafka.consumer.auto.offset.reset = latest
a1.sources.s1.batchSize = 1000

## configure channel c1
## a1.channels.c1.type = memory
## a1.channels.c1.capacity = 10000
## a1.channels.c1.transactionCapacity = 1000
a1.channels.c1.type = file
a1.channels.c1.checkpointDir = /home/data/flumeData/checkpoint/queue
a1.channels.c1.dataDirs = /home/data/flumeData/flumedata/queue

## configure sink k1
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path = hdfs://hurys23:8020/user/hive/warehouse/hurys_dc_ods.db/ods_queue/day=%Y-%m-%d/
a1.sinks.k1.hdfs.filePrefix = queue
a1.sinks.k1.hdfs.fileSuffix = .log
a1.sinks.k1.hdfs.round = true
a1.sinks.k1.hdfs.roundValue = 10
a1.sinks.k1.hdfs.roundUnit = second
a1.sinks.k1.hdfs.rollSize = 1200000000
a1.sinks.k1.hdfs.rollCount = 0
a1.sinks.k1.hdfs.rollInterval = 0
a1.sinks.k1.hdfs.idleTimeout = 60
a1.sinks.k1.hdfs.minBlockReplicas = 1

a1.sinks.k1.hdfs.fileType = SequenceFile
a1.sinks.k1.hdfs.codeC = gzip

## Bind the source and sink to the channel
a1.sources.s1.channels = c1
a1.sinks.k1.channel = c1

2、用海豚调度Flume任务

#!/bin/bash
source /etc/profile

/usr/local/hurys/dc_env/flume/flume190/bin/flume-ng agent -n a1 -f /usr/local/hurys/dc_env/flume/flume190/conf/queue.properties

3、目标路径

(二)Kettle采集MySQL维度数据

1、Kettle任务配置

2、用海豚调度Kettle任务

#!/bin/bash
source /etc/profile

/usr/local/hurys/dc_env/kettle/data-integration/pan.sh -rep=hurys_linux_kettle_repository -user=admin -pass=admin -dir=/mysql_to_hdfs/ -trans=23_MySQL_to_HDFS_tb_radar_lane level=Basic >>/home/log/kettle/23_MySQL_to_HDFS_tb_radar_lane_`date +%Y%m%d`.log 

3、目标路径

三、ODS层

(一)业务数据表

use hurys_dc_ods;create external table  if not exists  ods_queue(queue_json  string
)
comment '静态排队数据表——静态分区'
partitioned by (day string)
stored as SequenceFile
;
--刷新表分区
msck repair table ods_queue;
--查看表分区
show partitions ods_queue;
--查看表数据
select * from ods_queue;

(二)维度数据表

use hurys_dc_basic;create  external  table  if not exists  tb_device_scene(id        int      comment '主键id',device_no string   comment '设备编号',scene_id  string   comment '场景编号'
)
comment '雷达场景表'
row format delimited fields terminated by ','
stored as  textfile  location '/data/tb_device_scene'
tblproperties("skip.header.line.count"="1") ;
--查看表数据
select * from hurys_dc_basic.tb_device_scene;

四、DWD层

(一)业务数据清洗

1、业务数据的JSON有多层

--1、静态排队数据内部表——动态分区  dwd_queue
create  table  if not exists  dwd_queue(device_no    string          comment '设备编号',lane_num     int             comment '车道数量',create_time  timestamp       comment '创建时间',lane_no      int             comment '车道编号',lane_type    int             comment '车道类型 0:渠化1:来向2:出口3:去向4:左弯待转区5:直行待行区6:右转专用道99:未定义车道',queue_count  int             comment '排队车辆数',queue_len    decimal(10,2)   comment '排队长度(m)',queue_head   decimal(10,2)   comment '排队第一辆车距离停止线距离(m)',queue_tail   decimal(10,2)   comment '排队最后一辆车距离停止线距离(m)'
)
comment '静态排队数据表——动态分区'
partitioned by (day string)
stored as orc
;
--动态插入数据with t1 as(
selectget_json_object(queue_json,'$.deviceNo')   device_no,get_json_object(queue_json,'$.createTime') create_time,get_json_object(queue_json,'$.laneNum')    lane_num,get_json_object(queue_json,'$.queueList')  queue_list
from hurys_dc_ods.ods_queue)
insert  overwrite  table  hurys_dc_dwd.dwd_queue partition(day)
selectt1.device_no,t1.lane_num,substr(create_time,1,19)                                               create_time ,get_json_object(list_json,'$.laneNo')                                  lane_no,get_json_object(list_json,'$.laneType')                                lane_type,get_json_object(list_json,'$.queueCount')                              queue_count,cast(get_json_object(list_json,'$.queueLen')   as decimal(10,2))       queue_len,cast(get_json_object(list_json,'$.queueHead')  as decimal(10,2))       queue_head,cast(get_json_object(list_json,'$.queueTail')  as decimal(10,2))       queue_tail,date(t1.create_time) day
from t1
lateral view explode(split(regexp_replace(regexp_replace(queue_list,'\\[|\\]','') ,   --将json数组两边的中括号去掉'\\}\\,\\{','\\}\\;\\{'),  --将json数组元素之间的逗号换成分号'\\;') --以分号作为分隔符(split函数以分号作为分隔))list_queue as list_json
where  device_no is not null  and create_time is not null and  get_json_object(list_json,'$.queueLen') between 0 and 500
and  get_json_object(list_json,'$.queueHead')  between 0 and 500 and  get_json_object(list_json,'$.queueTail')  between 0 and 500 and  get_json_object(list_json,'$.queueCount') between 0 and 100
group by t1.device_no, t1.lane_num, substr(create_time,1,19), get_json_object(list_json,'$.laneNo'), get_json_object(list_json,'$.laneType'), get_json_object(list_json,'$.queueCount'), cast(get_json_object(list_json,'$.queueLen')   as decimal(10,2)), cast(get_json_object(list_json,'$.queueHead')  as decimal(10,2)), cast(get_json_object(list_json,'$.queueTail')  as decimal(10,2)), date(t1.create_time)
;
--查看分区
show partitions dwd_queue;
--查看数据
select * from dwd_queue
where day='2024-03-11';
--删掉表分区
alter table hurys_dc_dwd.dwd_queue drop partition (day='2024-03-11');

2、业务数据的JSON只有一层

--2、转向比数据内部表——动态分区  dwd_turnratio
create  table  if not exists  dwd_turnratio(device_no       string        comment '设备编号',cycle           int           comment '转向比数据周期' ,create_time     timestamp     comment '创建时间',volume_sum      int           comment '指定时间段内通过路口的车辆总数',speed_avg       decimal(10,2) comment '指定时间段内通过路口的所有车辆速度的平均值',volume_left     int           comment '指定时间段内通过路口的左转车辆总数',speed_left      decimal(10,2) comment '指定时间段内通过路口的左转车辆速度的平均值',volume_straight int           comment '指定时间段内通过路口的直行车辆总数',speed_straight  decimal(10,2) comment '指定时间段内通过路口的直行车辆速度的平均值',volume_right    int           comment '指定时间段内通过路口的右转车辆总数',speed_right     decimal(10,2) comment '指定时间段内通过路口的右转车辆速度的平均值',volume_turn     int           comment '指定时间段内通过路口的掉头车辆总数',speed_turn      decimal(10,2) comment '指定时间段内通过路口的掉头车辆速度的平均值'
)
comment '转向比数据表——动态分区'
partitioned by (day string)   --分区字段不能是表中已经存在的数据,可以将分区字段看作表的伪列。
stored as orc                 --表存储数据格式为orc
;
--动态插入数据
--解析json字段、去重、非空、volumeSum>=0
--speed_avg、speed_left、speed_straight、speed_right、speed_turn 等字段保留两位小数
--0<=volume_sum<=1000、0<=speed_avg<=150、0<=volume_left<=1000、0<=speed_left<=100、0<=volume_straight<=1000
--0<=speed_straight<=150、0<=volume_right<=1000、0<=speed_right<=100、0<=volume_turn<=100、0<=speed_turn<=100
with t1 as(
selectget_json_object(turnratio_json,'$.deviceNo')        device_no,get_json_object(turnratio_json,'$.cycle')           cycle,get_json_object(turnratio_json,'$.createTime')      create_time,get_json_object(turnratio_json,'$.volumeSum')       volume_sum,cast(get_json_object(turnratio_json,'$.speedAvg')     as decimal(10,2))    speed_avg,get_json_object(turnratio_json,'$.volumeLeft')      volume_left,cast(get_json_object(turnratio_json,'$.speedLeft')    as decimal(10,2))    speed_left,get_json_object(turnratio_json,'$.volumeStraight')  volume_straight,cast(get_json_object(turnratio_json,'$.speedStraight')as decimal(10,2))    speed_straight,get_json_object(turnratio_json,'$.volumeRight')     volume_right,cast(get_json_object(turnratio_json,'$.speedRight')   as decimal(10,2))    speed_right ,case when  get_json_object(turnratio_json,'$.volumeTurn')  is null then 0 else get_json_object(turnratio_json,'$.volumeTurn')  end as   volume_turn ,case when  get_json_object(turnratio_json,'$.speedTurn')   is null then 0 else cast(get_json_object(turnratio_json,'$.speedTurn')as decimal(10,2))   end as   speed_turn
from hurys_dc_ods.ods_turnratio)
insert overwrite table hurys_dc_dwd.dwd_turnratio partition (day)
selectt1.device_no,cycle,substr(create_time,1,19)              create_time ,volume_sum,speed_avg,volume_left,speed_left,volume_straight,speed_straight ,volume_right,speed_right ,volume_turn,speed_turn,date(create_time) day
from t1
where device_no is not null and volume_sum between 0 and 1000 and speed_avg between 0 and 150 and volume_left  between 0 and 1000
and speed_left between 0 and 100 and volume_straight between 0 and 1000 and speed_straight between 0 and 150
and volume_right between 0 and 1000 and speed_right between 0 and 100 and volume_turn between 0 and 100 and speed_turn between 0 and 100
group by t1.device_no, cycle, substr(create_time,1,19), volume_sum, speed_avg, volume_left, speed_left, volume_straight, speed_straight, volume_right, speed_right, volume_turn, speed_turn, date(create_time)
;
--查看分区
show partitions dwd_turnratio;
--查看数据
select * from hurys_dc_dwd.dwd_turnratio
where day='2024-03-11';
--删掉表分区
alter table hurys_dc_dwd.dwd_turnratio drop partition (day='2024-03-11');

(二)维度数据清洗

create table if not exists  dwd_radar_lane(device_no         string  comment '雷达编号',lane_no           string  comment '车道编号',lane_id           string  comment '车道id',lane_direction    string  comment '行驶方向',lane_type         int     comment '车道类型 0渠化,1来向路段,2出口,3去向路段,4路口,5非路口路段,6其他',lane_length       float   comment '车道长度',lane_type_name    string  comment '车道类型名称'
)
comment '雷达车道信息表'
stored as orc
;
--create table if not exists  dwd_radar_lane  stored as orc as
--加载数据
insert overwrite table  hurys_dc_dwd.dwd_radar_lane
select
device_no, lane_no, lane_id, lane_direction, lane_type,lane_length ,case when lane_type='0' then '渠化'when lane_type='1' then '来向路段'when lane_type='2' then '出口'when lane_type='3' then '去向路段'end as lane_type_name
from hurys_dc_basic.tb_radar_lane
where lane_length is not null
group by device_no, lane_no, lane_id, lane_direction, lane_type, lane_length
;
--查看表数据
select * from hurys_dc_dwd.dwd_radar_lane;

五、DWS层

create  table  if not exists  dws_statistics_volume_1hour(device_no        string         comment '设备编号',scene_name       string         comment '场景名称',lane_no          int            comment '车道编号',lane_direction   string         comment '车道流向',section_no       int            comment '断面编号',device_direction string         comment '雷达朝向',sum_volume_hour  int            comment '每小时总流量',start_time       timestamp      comment '开始时间'
)
comment '统计数据流量表——动态分区——1小时周期'
partitioned by (day string)
stored as orc
;
--动态加载数据  --两个一起 1m41s 、 convert.join=false  1m43s、
--注意字段顺序  查询语句中字段顺序与建表字段顺序一致
insert  overwrite  table  hurys_dc_dws.dws_statistics_volume_1hour  partition(day)
selectdwd_st.device_no,dwd_sc.scene_name,dwd_st.lane_no,dwd_rl.lane_direction,dwd_st.section_no,dwd_rc.device_direction,sum(volume_sum) sum_volume_hour,concat(substr(create_time, 1, 14), '00:00') start_time,day
from hurys_dc_dwd.dwd_statistics as dwd_stright join hurys_dc_dwd.dwd_radar_lane as dwd_rlon dwd_rl.device_no=dwd_st.device_no and dwd_rl.lane_no=dwd_st.lane_noright join hurys_dc_dwd.dwd_device_scene as dwd_dson dwd_ds.device_no=dwd_st.device_noright join hurys_dc_dwd.dwd_scene as dwd_scon dwd_sc.scene_id = dwd_ds.scene_idright join hurys_dc_dwd.dwd_radar_config as dwd_rcon dwd_rc.device_no=dwd_st.device_no
where dwd_st.create_time is not null
group by dwd_st.device_no, dwd_sc.scene_name, dwd_st.lane_no, dwd_rl.lane_direction, dwd_st.section_no, dwd_rc.device_direction, concat(substr(create_time, 1, 14), '00:00'), day
;
--查看分区
show partitions dws_statistics_volume_1hour;
--查看数据
select * from hurys_dc_dws.dws_statistics_volume_1hour
where day='2024-02-29';

六、ADS层

这里的ADS层,其实就是用Kettle把Hive的DWS层结果数据同步到ClickHouse中,也是一个Kettle任务而已

这样用海豚进行调度每一层的任务,整个离线数仓流程就跑起来了

七、海豚调度任务(除了2个采集任务外)

(一)delete_stale_data(根据删除策略删除ODS层原始数据)

#! /bin/bash
source /etc/profile

nowdate=`date --date='0 days ago' "+%Y%m%d"`
day_30_ago_date=`date -d "30 day ago " +%Y-%m-%d`

#静态排队数据
hadoop fs -test -e /user/hive/warehouse/hurys_dc_ods.db/ods_queue/day=${day_30_ago_date}
if [ $? -ne 0 ]; then
    echo "文件不存在"
else 
    hdfs dfs -rm -r /user/hive/warehouse/hurys_dc_ods.db/ods_queue/day=${day_30_ago_date}
fi

#轨迹数据
hadoop fs -test -e /user/hive/warehouse/hurys_dc_ods.db/ods_track/day=${day_30_ago_date}
if [ $? -ne 0 ]; then
    echo "文件不存在"
else 
    hdfs dfs -rm -r /user/hive/warehouse/hurys_dc_ods.db/ods_track/day=${day_30_ago_date}
fi

#动态排队数据
hadoop fs -test -e /user/hive/warehouse/hurys_dc_ods.db/ods_queue_dynamic/day=${day_30_ago_date}
if [ $? -ne 0 ]; then
    echo "文件不存在"
else 
    hdfs dfs -rm -r /user/hive/warehouse/hurys_dc_ods.db/ods_queue_dynamic/day=${day_30_ago_date}
fi

#区域数据
hadoop fs -test -e /user/hive/warehouse/hurys_dc_ods.db/ods_area/day=${day_30_ago_date}
if [ $? -ne 0 ]; then
    echo "文件不存在"
else 
    hdfs dfs -rm -r /user/hive/warehouse/hurys_dc_ods.db/ods_area/day=${day_30_ago_date}
fi

#事件数据
hadoop fs -test -e /user/hive/warehouse/hurys_dc_ods.db/ods_event/day=${day_30_ago_date}
if [ $? -ne 0 ]; then
    echo "文件不存在"
else 
    hdfs dfs -rm -r /user/hive/warehouse/hurys_dc_ods.db/ods_event/day=${day_30_ago_date}
fi

#删除表分区
hive -e "
use hurys_dc_ods;

alter table hurys_dc_ods.ods_area drop partition (day='$day_30_ago_date');
alter table hurys_dc_ods.ods_event drop partition (day='$day_30_ago_date');
alter table hurys_dc_ods.ods_queue drop partition (day='$day_30_ago_date');
alter table hurys_dc_ods.ods_queue_dynamic drop partition (day='$day_30_ago_date');
alter table hurys_dc_ods.ods_track drop partition (day='$day_30_ago_date')
"

(二)flume(Flume采集Kafka业务数据)

(三)create_database_table(自动创建Hive和ClickHouse的库表)

1、创建Hive库表

#! /bin/bash
source /etc/profile

hive -e "
source  1_dws.sql
"

2、创建ClickHouse库表

#! /bin/bash
source /etc/profile

clickhouse-client --user default --password hurys@123 -d default --multiquery <1_ads.sql

(四)hive_dws(DWS层任务)

#! /bin/bash
source /etc/profile

nowdate=`date --date='0 days ago' "+%Y%m%d"`
yesdate=`date -d yesterday +%Y-%m-%d`

hive -e "
use hurys_dc_dws;

set hive.vectorized.execution.enabled=false;

set hive.exec.dynamic.partition=true;
set hive.exec.dynamic.partition.mode=nonstrict;
set hive.exec.max.dynamic.partitions.pernode=1000;
set hive.exec.max.dynamic.partitions=2000;
    
            
insert  overwrite  table  hurys_dc_dws.dws_statistics_volume_1hour  partition(day='$yesdate')
select
       dwd_st.device_no,
       dwd_sc.scene_name,
       dwd_st.lane_no,
       dwd_rl.lane_direction,
       dwd_st.section_no,
       dwd_rc.device_direction,
       sum(volume_sum) sum_volume_hour,
       concat(substr(create_time, 1, 14), '00:00') start_time
from hurys_dc_dwd.dwd_statistics as dwd_st
    right join hurys_dc_dwd.dwd_radar_lane as dwd_rl
              on dwd_rl.device_no=dwd_st.device_no and dwd_rl.lane_no=dwd_st.lane_no
    right join hurys_dc_dwd.dwd_device_scene as dwd_ds
              on dwd_ds.device_no=dwd_st.device_no
    right join hurys_dc_dwd.dwd_scene as dwd_sc
              on dwd_sc.scene_id = dwd_ds.scene_id
    right join hurys_dc_dwd.dwd_radar_config as dwd_rc
              on dwd_rc.device_no=dwd_st.device_no
where dwd_st.create_time is not null  and  day= '$yesdate'
group by dwd_st.device_no, dwd_sc.scene_name, dwd_st.lane_no, dwd_rl.lane_direction, dwd_st.section_no, dwd_rc.device_direction, concat(substr(create_time, 1, 14), '00:00')    
"

(五)hive_basic(维度表基础库)

#! /bin/bash
source /etc/profile

hive -e "
set hive.vectorized.execution.enabled=false;

use hurys_dc_basic
"

(六)dolphinscheduler_log(删除海豚日志文件)

#! /bin/bash
source /etc/profile

nowdate=`date --date='0 days ago' "+%Y%m%d"`
yesdate=`date -d yesterday +%Y-%m-%d`

cd  /usr/local/hurys/dc_env/dolphinscheduler/dolphin/logs/

rm -rf dolphinscheduler-api.$yesdate*.log
rm -rf dolphinscheduler-master.$yesdate*.log
rm -rf dolphinscheduler-worker.$yesdate*.log

(七)Kettle_Hive_to_ClickHouse(Kettle采集Hive的DWS层数据同步到ClickHouse的ADS层中)

#!/bin/bash
source /etc/profile

/usr/local/hurys/dc_env/kettle/data-integration/pan.sh -rep=hurys_linux_kettle_repository -user=admin -pass=admin -dir=/hive_to_clickhouse/ -trans=17_Hive_to_ClickHouse_ads_avg_volume_15min level=Basic >>/home/log/kettle/17_Hive_to_ClickHouse_ads_avg_volume_15min_`date +%Y%m%d`.log 

(八)Kettle_MySQL_to_HDFS(Kettle采集MySQL维度表数据到HDFS中)

(九)hive_dwd(DWD层任务)

1、业务数据的JSON有多层

#! /bin/bash
source /etc/profile

nowdate=`date --date='0 days ago' "+%Y%m%d"`
yesdate=`date -d yesterday +%Y-%m-%d`

hive -e "
use hurys_dc_dwd;

set hive.vectorized.execution.enabled=false;

set hive.exec.dynamic.partition=true;
set hive.exec.dynamic.partition.mode=nonstrict;
set hive.exec.max.dynamic.partitions.pernode=1000;
set hive.exec.max.dynamic.partitions=1500;

with t1 as(
select
       get_json_object(queue_json,'$.deviceNo')   device_no,
       get_json_object(queue_json,'$.createTime') create_time,
       get_json_object(queue_json,'$.laneNum')    lane_num,
       get_json_object(queue_json,'$.queueList')  queue_list
from hurys_dc_ods.ods_queue
where date(get_json_object(queue_json,'$.createTime')) = '$yesdate'
    )
insert  overwrite  table  hurys_dc_dwd.dwd_queue partition(day='$yesdate')
select
        t1.device_no,
        t1.lane_num,
        substr(create_time,1,19)                                               create_time ,
        get_json_object(list_json,'$.laneNo')                                  lane_no,
        get_json_object(list_json,'$.laneType')                                lane_type,
        get_json_object(list_json,'$.queueCount')                              queue_count,
        cast(get_json_object(list_json,'$.queueLen')   as decimal(10,2))       queue_len,
        cast(get_json_object(list_json,'$.queueHead')  as decimal(10,2))       queue_head,
        cast(get_json_object(list_json,'$.queueTail')  as decimal(10,2))       queue_tail
from t1
lateral view explode(split(regexp_replace(regexp_replace(queue_list,
                                                '\\\\[|\\\\]','') ,      --将json数组两边的中括号去掉
                                 '\\\\}\\\\,\\\\{','\\\\}\\\\;\\\\{'),   --将json数组元素之间的逗号换成分号
                   '\\\\;')   --以分号作为分隔符(split函数以分号作为分隔)
          )list_queue as list_json
where  device_no is not null  and  get_json_object(list_json,'$.queueLen') between 0 and 500 and  get_json_object(list_json,'$.queueHead')  between 0 and 500 and  get_json_object(list_json,'$.queueTail')  between 0 and 500 and  get_json_object(list_json,'$.queueCount') between 0 and 100
group by t1.device_no, t1.lane_num, substr(create_time,1,19), get_json_object(list_json,'$.laneNo'), get_json_object(list_json,'$.laneType'), get_json_object(list_json,'$.queueCount'), cast(get_json_object(list_json,'$.queueLen')   as decimal(10,2)), cast(get_json_object(list_json,'$.queueHead')  as decimal(10,2)), cast(get_json_object(list_json,'$.queueTail')  as decimal(10,2))
"

2、业务数据的JSON单层

#! /bin/bash
source /etc/profile

nowdate=`date --date='0 days ago' "+%Y%m%d"`
yesdate=`date -d yesterday +%Y-%m-%d`

hive -e "
use hurys_dc_dwd;

set hive.vectorized.execution.enabled=false;

set hive.exec.dynamic.partition=true;
set hive.exec.dynamic.partition.mode=nonstrict;
set hive.exec.max.dynamic.partitions.pernode=1000;
set hive.exec.max.dynamic.partitions=1500;

with t1 as(
select
        get_json_object(turnratio_json,'$.deviceNo')        device_no,
        get_json_object(turnratio_json,'$.cycle')           cycle,
        get_json_object(turnratio_json,'$.createTime')      create_time,
        get_json_object(turnratio_json,'$.volumeSum')       volume_sum,
        cast(get_json_object(turnratio_json,'$.speedAvg')     as decimal(10,2))    speed_avg,
        get_json_object(turnratio_json,'$.volumeLeft')      volume_left,
        cast(get_json_object(turnratio_json,'$.speedLeft')    as decimal(10,2))    speed_left,
        get_json_object(turnratio_json,'$.volumeStraight')  volume_straight,
        cast(get_json_object(turnratio_json,'$.speedStraight')as decimal(10,2))    speed_straight,
        get_json_object(turnratio_json,'$.volumeRight')     volume_right,
        cast(get_json_object(turnratio_json,'$.speedRight')   as decimal(10,2))    speed_right ,
        case when  get_json_object(turnratio_json,'$.volumeTurn')  is null then 0 else get_json_object(turnratio_json,'$.volumeTurn')  end as   volume_turn ,
        case when  get_json_object(turnratio_json,'$.speedTurn')   is null then 0 else cast(get_json_object(turnratio_json,'$.speedTurn')as decimal(10,2))   end as   speed_turn
from hurys_dc_ods.ods_turnratio
where date(get_json_object(turnratio_json,'$.createTime')) = '$yesdate'
)
insert overwrite table hurys_dc_dwd.dwd_turnratio partition (day='$yesdate')
select
       t1.device_no,
       cycle,
       substr(create_time,1,19)              create_time ,
       volume_sum,
       speed_avg,
       volume_left,
       speed_left,
       volume_straight,
       speed_straight ,
       volume_right,
       speed_right ,
       volume_turn,
       speed_turn
from t1
where device_no is not null and volume_sum between 0 and 1000 and speed_avg between 0 and 150 and volume_left  between 0 and 1000 and speed_left between 0 and 100 and volume_straight between 0 and 1000 and speed_straight between 0 and 150 and volume_right between 0 and 1000 and speed_right between 0 and 100 and volume_turn between 0 and 100 and speed_turn between 0 and 100
group by t1.device_no, cycle, substr(create_time,1,19), volume_sum, speed_avg, volume_left, speed_left, volume_straight, speed_straight, volume_right, speed_right, volume_turn, speed_turn
"

3、维度数据

#! /bin/bash
source /etc/profile

hive -e "
use hurys_dc_dwd;

set hive.vectorized.execution.enabled=false;

insert overwrite table hurys_dc_dwd.dwd_holiday
select
day, holiday,year
from hurys_dc_basic.tb_holiday
group by day, holiday, year
"

(十)hive_ods(ODS层任务)

#! /bin/bash
source /etc/profile

hive -e "
use hurys_dc_ods;

msck repair table ods_queue;

msck repair table ods_turnratio;

msck repair table ods_queue_dynamic;

msck repair table ods_statistics;

msck repair table ods_area;

msck repair table ods_pass;

msck repair table ods_track;

msck repair table ods_evaluation;

msck repair table ods_event;
"

目前,整个离线数仓的流程大致就是这样,有问题的后面再完善!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/587925.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Mysql】一文解读【事务】-【基本操作/四大特性/并发事务问题/事务隔离级别】

前言 大家好吖&#xff0c;欢迎来到 YY 滴MySQL系列 &#xff0c;热烈欢迎&#xff01; 本章主要内容面向接触过C Linux的老铁 主要内容含&#xff1a; 欢迎订阅 YY滴C专栏&#xff01;更多干货持续更新&#xff01;以下是传送门&#xff01; YY的《C》专栏YY的《C11》专栏YY的…

前端调试工具之Chrome Elements、Network、Sources、TimeLine调试

常用的调试工具有Chrome浏览器的调试工具&#xff0c;火狐浏览器的Firebug插件调试工具&#xff0c;IE的开发人员工具等。它们的功能与使用方法大致相似。Chrome浏览器简洁快速&#xff0c;功能强大这里主要介绍Chrome浏览器的调试工具。 打开 Google Chrome 浏览器&#xff0c…

Taro多行文本最多展示5行,超出“查看更多”展示,点击弹层

Taro中&#xff0c;页面需求&#xff1a; 多行文本&#xff0c;展示最多展示5行&#xff0c;超出5行&#xff0c;展示“查看更多”按钮&#xff0c;点击弹层展示文本详细信息。 弹层代码就不说了&#xff0c;着重说一下怎么获取区域高度&#xff5e; 1.区域设置max-height&am…

redis的键值基本操作

设置数据 首先设置键值对 删除age&#xff0c;会得到nil&#xff0c;表示这个键已经被删除掉了 判断age键还在不在 查找所有键 查找所有以me结尾的键 删除所有键 redis的键和值都是二进制存储的&#xff0c;所以默认不支持中文。 但是&#xff0c;我们重新登录客户端&#xff…

MySQL-linux安装-万能RPM法

一、MySQL的Linux版安装 1、 CentOS7下检查MySQL依赖 1. 检查/tmp临时目录权限&#xff08;必不可少&#xff09; 由于mysql安装过程中&#xff0c;会通过mysql用户在/tmp目录下新建tmp_db文件&#xff0c;所以请给/tmp较大的权限。执行 &#xff1a; chmod -R 777 /tmp2. …

为什么mac文件拖拽不了 mac文件拖不进硬盘里 macbookpro文件无法拖进移动硬盘 Tuxera NTFS for Mac 2023绿色

如果你是一位Mac用户&#xff0c;你可能会遇到这样的问题&#xff1a;你想把Mac上的文件拖拽到其他位置&#xff0c;比如桌面、文件夹或者外接硬盘&#xff0c;但是却发现无法操作&#xff0c;这是为什么呢&#xff1f;这篇文章将为你解答为什么mac文件拖拽不了&#xff0c;以及…

非关系型数据库-----------探索 Redis高可用 与持久化

目录 一、Redis 高可用 1.1什么是高可用 1.2Redis的高可用技术 二、 Redis 持久化 2.1持久化的功能 2.2Redis 提供两种方式进行持久化 三、Redis 持久化之----------RDB 3.1触发条件 3.1.1手动触发 3.1.2自动触发 3.1.3其他自动触发机制 3.2执行流程 3.3启动时加载…

增强Java技能:使用OkHttp下载www.dianping.com信息

在这篇技术文章中&#xff0c;我们将探讨如何使用Java和OkHttp库来下载并解析www.dianping.com上的商家信息。我们的目标是获取商家名称、价格、评分和评论&#xff0c;并将这些数据存储到CSV文件中。此外&#xff0c;我们将使用爬虫代理来绕过任何潜在的IP限制&#xff0c;并实…

Linux编译器 --- gcc/g++使用

文章目录 gcc/g使用1.背景知识2.gcc如何完成2.1 预处理(进行宏替换)2.2 编译&#xff08;生成汇编&#xff09;2.3 汇编&#xff08;生成机器可识别代码&#xff09;2.4 连接&#xff08;生成可执行文件或库文件&#xff09;2.5 gcc选项 gcc/g使用 1.背景知识 预处理&#xf…

iOS开发进阶(十三):脚手架创建iOS项目

文章目录 一、前言二、xcode-select 命令三、拓展阅读 一、前言 项目初期&#xff0c;需要搭建项目基本框架&#xff0c;为此离不开辅助工具&#xff0c;即脚手架。当然&#xff0c;IDE也可以实现新建空白项目&#xff0c;但是其新建后的项目结构可能不符合预期设计&#xff0…

建立统一网络身份认证平台,赋能用户信息安全

“近年来&#xff0c;层出不穷的网络谣言、网络暴力事件以及网络水军、网络黑灰产犯罪屡禁不止、屡打不绝&#xff0c;其主要原因是网络实名制落实不到位。”全国人大代表、黑龙江省大庆市公安局网络警察分局副局长贾晓亮接受记者采访时表示&#xff0c;网络信息安全问题是我们…

GD32F470_EC11旋转编码器模块移植

2.2 EC11旋转编码器 旋转编码器是一种将旋转位移转换为一连串数字脉冲信号的旋转式传感器。这些脉冲用来控制角位移。读数系统通常采用差分方式&#xff0c;即将两个波形一样但相位差为180的不同信号进行比较&#xff0c;以便提高输出信号的质量和稳定性。读数是在两个信号的差…