【深度学习注意力机制系列】—— ECANet注意力机制(附pytorch实现)

ECANet(Efficient Channel Attention Network)是一种用于图像处理任务的神经网络架构,它在保持高效性的同时,有效地捕捉图像中的通道间关系,从而提升了特征表示的能力。ECANet通过引入通道注意力机制,以及在卷积层中嵌入该机制,取得了优越的性能。本文将对ECANet的核心思想、结构以及优势进行详细讲解。

1. 核心思想

ECANet的核心思想是在卷积操作中引入通道注意力机制,以捕捉不同通道之间的关系,从而提升特征表示的能力。通道注意力机制的目标是自适应地调整通道特征的权重,使得网络可以更好地关注重要的特征,抑制不重要的特征。通过这种机制,ECANet能够在不增加过多参数和计算成本的情况下,有效地增强网络的表征能力。

2. 结构

ECANet的结构主要分为两个部分:通道注意力模块嵌入式通道注意力模块

在这里插入图片描述

  • 通道注意力模块

通道注意力模块是ECANet的核心组成部分,它的目标是根据通道之间的关系,自适应地调整通道特征的权重。该模块的输入是一个特征图(Feature Map),通过全局平均池化得到每个通道的全局平均值,然后通过一组全连接层来生成通道注意力权重。这些权重被应用于输入特征图的每个通道,从而实现特征图中不同通道的加权组合。最后,通过一个缩放因子对调整后的特征进行归一化,以保持特征的范围。

  • 嵌入式通道注意力模块

嵌入式通道注意力模块是ECANet的扩展部分,它将通道注意力机制嵌入到卷积层中,从而在卷积操作中引入通道关系。这种嵌入式设计能够在卷积操作的同时,进行通道注意力的计算,减少了计算成本。具体而言,在卷积操作中,将输入特征图划分为多个子特征图,然后分别对每个子特征图进行卷积操作,并在卷积操作的过程中引入通道注意力。最后,将这些卷积得到的子特征图进行合并,得到最终的输出特征图。

实现机制:

  • 通过全剧平均池化层,将每个通道大的二维特征(h*w)压缩为一个实数, 特征图维变化: (C, H, W) -> (C, 1, 1)

  • 计算得到自适应的一维卷积核的kernel_size,计算公式如下:

在这里插入图片描述

其中
b = 1 γ = 2 C 为通道数 b = 1 \\ \gamma = 2\\ C为通道数 b=1γ=2C为通道数

  • 将kernel_size = k的一维卷积核(一维same核)用于特征图,得到每个通道的权重向量, 维度变化(C, 1, 1) -> (C, 1, 1).
  • 将归一化后的权重加权乘以输入特征图 (C, H, W) * (C, 1, 1) -> (C, H, W)

3. 优势

ECANet的设计在以下几个方面具有优势:

  • 高效性

ECANet通过嵌入式通道注意力模块,在保持高效性的同时,引入了通道注意力机制。这使得网络能够在不增加过多计算成本的情况下,提升特征表示的能力。

  • 提升特征表示

通道注意力机制能够自适应地调整通道特征的权重,使得网络能够更好地关注重要的特征。这种机制有助于提升特征的判别能力,从而提升了网络的性能。

  • 减少过拟合

通道注意力机制有助于抑制不重要的特征,从而减少了过拟合的风险。网络更加关注重要的特征,有助于提高泛化能力。

4. 代码实现

class ECANet(nn.Module):def __init__(self, in_channels, gamma=2, b=1):super(ECANet, self).__init__()self.in_channels = in_channelsself.fgp = nn.AdaptiveAvgPool2d((1, 1))kernel_size = int(abs((math.log(self.in_channels, 2) + b) / gamma))kernel_size = kernel_size if kernel_size % 2 else kernel_size + 1self.con1 = nn.Conv1d(1,1,kernel_size=kernel_size,padding=(kernel_size - 1) // 2,bias=False)self.act1 = nn.Sigmoid()def forward(self, x):output = self.fgp(x)output = output.squeeze(-1).transpose(-1, -2)output = self.con1(output).transpose(-1, -2).unsqueeze(-1)output = self.act1(output)output = torch.multiply(x, output)return output

总结

ECANet是一种高效的神经网络架构,通过引入通道注意力机制,能够有效地捕捉图像中的通道关系,提升特征表示的能力。它的结构包括通道注意力模块和嵌入式通道注意力模块,具有高效性、提升特征表示和减少过拟合等优势。通过这种设计,ECANet在图像处理任务中取得了优越的性能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/58884.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java SPI机制的原理和实践

SPI 全称 Service Provider Interface,是 Java 提供的,旨在由第三方实现或扩展的 API,它是一种用于动态加载服务的机制。Java 中 SPI 机制主要思想是将装配的控制权移到程序之外,在模块化设计中这个机制尤其重要,其核心…

Java经典面试题总结(一)

Java经典面试题总结(一) 题一:Java编译运行原理题二:JDK,JVM,JRE三者之间的关系题三:谈一下对冯诺依曼体系的了解题四:重载与重写的区别题五:拆箱装箱是指什么&#xff1…

通过Idea部署Tomcat服务器(详细图文教学)

1.在idea中创建项目 有maven构建工具就创建maven,没有就正常创建一个普通的java程序 创建普通java项目 2.添加框架 3.配置 Tomcat 注意:创建web项目后我们需要配置tomcat才能运行,下面我们来进行配置。 4.添加部署 回到服务器 5.完善配置 6…

算法与数据结构(二十一)二叉树(纲领篇)

备注:本文旨在通过 labuladong 的二叉树(纲领篇)理解框架思维,用于个人笔记及交流学习,版权归原作者 labuladong 所有; 我刷了这么多年题,浓缩出二叉树算法的一个总纲放在这里,也许…

jupyter lab环境配置

1.jupyterlab 使用虚拟环境 conda install ipykernelpython -m ipykernel install --user --name tf --display-name "tf" #例:环境名称tf2. jupyter lab kernel管理 show kernel list jupyter kernelspec listremove kernel jupyter kernelspec re…

Nginx反向代理配置+负载均衡集群部署

文章目录 负载均衡反向代理基础环境部署:什么是代理实验环境图流量过程 环境部署准备两台Web服务器安装Nginx准备页面内容添加主机名 代理服务器配置 修改windos hosts文件测试:终端浏览器 负载均衡反向代理基础环境部署: 什么是代理 正向代…

浅析基于安防监控EasyCVR视频汇聚融合技术的运输管理系统

一、项目背景 近年来,随着物流行业迅速发展,物流运输费用高、运输过程不透明、货损货差率高、供应链协同能力差等问题不断涌现,严重影响了物流作业效率,市场对于运输管理数字化需求愈发迫切。当前运输行业存在的难题如下&#xf…

docker 安装hive

记录一下使用docker快速搭建部署hive环境 目录 写在前面 步骤 安装docker 安装docker安装docker-compose配置docker国内镜像源(可选) 安装git & 配置github部署Hive docker-hive开始部署 使用Hive命令行收尾工作 安装vi、lrzsz关闭相关命令 END…

day5gdb调试模式和makefile

一、gdb调试 1.1gdb调试的作用 gdb调试检查的是逻辑错误,而非语法错误 1.2gdb流程 1、gcc -g 1.c ---->加-g参数的作用,生成可以调试的gdb文件 2、gdb 可执行文件名/a.out ---->进入gdb工具进行调试 3、输入l,带行号打印文件信息…

二、web核心防御机制(上)

文章目录 一、Web应用程序与风险1.1 Web应用程序的发展历程1.2 Web应用程序安全 二、核心防御机制2.1 处理用户访问2.2 处理用户输入2.2.1输入的多样性2.2.2 输入处理方法2.2.3 边界确认2.2.4 多步确认与规范化 一、Web应用程序与风险 1.1 Web应用程序的发展历程 在因特网发展…

旷视科技AIoT软硬一体化走向深处,生态和大模型成为“两翼”?

齐奏AI交响曲的当下,赛道玩家各自精彩。其中,被称作AI四小龙的商汤科技、云从科技、依图科技、旷视科技已成长为业内标杆,并积极追赶新浪潮。无论是涌向二级市场还是布局最新风口大模型,AI四小龙谁都不甘其后。 以深耕AIoT软硬一…

14_基于Flink将pulsar数据写入到HBase

3.7.基于Flink将数据写入到HBase 3.7.1.编写Flink完成数据写入到Hbase操作, 完成数据备份, 便于后续进行即席查询和离线分析 3.7.1.1.HBase基本介绍 hbase是基于Google发布bigTable论文产生一款软件, 是一款noSQL型数据, 不支持SQL. 不支持join的操作, 没有表关系, 不支持事…