AtCoder Beginner Contest 347 (ABCDEF题)视频讲解

A - Divisible

Problem Statement

You are given positive integers N N N and K K K, and a sequence of length N N N, A = ( A 1 , A 2 , … , A N ) A=(A_1,A_2,\ldots,A_N) A=(A1,A2,,AN).
Extract all elements of A A A that are multiples of K K K, divide them by K K K, and print the quotients.

Constraints

1 ≤ N , K ≤ 100 1\leq N,K\leq 100 1N,K100
KaTeX parse error: Expected 'EOF', got '&' at position 11: 1\leq A_1 &̲lt; A_2 < \l…
A A A has at least one multiple of K K K.
All given numbers are integers.

Input

The input is given from Standard Input in the following format:

N N N K K K
A 1 A_1 A1 A 2 A_2 A2 … \ldots A N A_N AN

Output

Divide all elements of A A A that are multiples of K K K and print the quotients in ascending order with spaces in between.

Sample Input 1
5 2
2 5 6 7 10
Sample Output 1
1 3 5

The multiples of 2 2 2 among the elements in A A A are 2 2 2, 6 6 6, and 10 10 10. Divide them by 2 2 2 to get 1 1 1, 3 3 3, and 5 5 5, and print them in ascending order with spaces in between.

Sample Input 2
3 1
3 4 7
Sample Output 2
3 4 7
Sample Input 3
5 10
50 51 54 60 65
Sample Output 3
5 6

Solution

具体见文末视频。


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;signed main() {cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);int n, k;cin >> n >> k;std::vector<int> a(n);for (int i = 0; i < n; i ++) {cin >> a[i];if (a[i] % k == 0)cout << a[i] / k << " ";}return 0;
}

B - Substring

Problem Statement

You are given a string S S S consisting of lowercase English letters. How many different non-empty substrings does S S S have?
A substring is a contiguous subsequence. For example, xxx is a substring of yxxxy but not of xxyxx.

Constraints

S S S is a string of length between 1 1 1 and 100 100 100, inclusive, consisting of lowercase English letters.

Input

The input is given from Standard Input in the following format:

S S S

Output

Print the answer.

Sample Input 1
yay
Sample Output 1
5

S S S has the following five different non-empty substrings:
a
y
ay
ya
yay

Sample Input 2
aababc
Sample Output 2
17
Sample Input 3
abracadabra
Sample Output 3
54

Solution

具体见文末视频。

Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;signed main() {cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);string s;cin >> s;int n = s.size();set<string> res;for (int i = 0; i < n; i ++)for (int j = 1; j <= n - i; j ++)res.insert(s.substr(i, j));cout << res.size() << endl;return 0;
}

C - Ideal Holidays

Problem Statement

In the Kingdom of AtCoder, a week consists of A + B A+B A+B days, with the first through A A A-th days being holidays and the ( A + 1 ) (A+1) (A+1)-th through ( A + B ) (A+B) (A+B)-th being weekdays.
Takahashi has N N N plans, and the i i i-th plan is scheduled D i D_i Di days later.
He has forgotten what day of the week it is today. Determine if it is possible for all of his N N N plans to be scheduled on holidays.

Constraints

1 ≤ N ≤ 2 × 1 0 5 1\leq N\leq 2\times 10^5 1N2×105
1 ≤ A , B ≤ 1 0 9 1\leq A,B\leq 10^9 1A,B109
KaTeX parse error: Expected 'EOF', got '&' at position 10: 1\leq D_1&̲lt;D_2&lt;\ldot…

Input

The input is given from Standard Input in the following format:

N N N A A A B B B
D 1 D_1 D1 D 2 D_2 D2 … \ldots D N D_N DN

Output

Print Yes in a single line if it is possible for all of Takahashi’s N N N plans to be scheduled on holidays, and No otherwise.

Sample Input 1
3 2 5
1 2 9
Sample Output 1
Yes

In this input, a week consists of seven days, with the first through second days being holidays and the third through seventh days being weekdays.
Let us assume today is the seventh day of the week. In this case, one day later would be the first day of the week, two days later would be the second day of the week, and nine days later would also be the second day of the week, making all plans scheduled on holidays. Therefore, it is possible for all of Takahashi’s N N N plans to be scheduled on holidays.

Sample Input 2
2 5 10
10 15
Sample Output 2
No
Sample Input 3
4 347 347
347 700 705 710
Sample Output 3
Yes

Solution

具体见文末视频。


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;const int N = 2e5 + 10;int n, a, b;
int d[N];signed main() {cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);cin >> n >> a >> b;int l1 = -1e18, r1 = 1e18, l2 = -1e18, r2 = 1e18;for (int i = 1; i <= n; i ++) {cin >> d[i];d[i] %= (a + b);int tl = (0 - d[i] + a + b) % (a + b), tr = (a - 1 - d[i] + a + b) % (a + b);if (tl > tr) {l1 = max(0ll, l1), r1 = min(r1, tr);l2 = max(l2, tl), r2 = min(a + b - 1, r2);} elsel1 = max(l1, tl), r1 = min(r1, tr), l2 = max(l2, tl), r2 = min(r2, tr);}if (l1 <= r1 || l2 <= r2) cout << "Yes" << endl;else cout << "No" << endl;return 0;
}

D - Popcount and XOR

Problem Statement

You are given non-negative integers a a a, b b b, and C C C.
Determine if there is a pair of non-negative integers ( X , Y ) (X, Y) (X,Y) that satisfies all of the following five conditions. If such a pair exists, print one.
KaTeX parse error: Expected 'EOF', got '&' at position 10: 0 \leq X &̲lt; 2^{60}
KaTeX parse error: Expected 'EOF', got '&' at position 10: 0 \leq Y &̲lt; 2^{60}
popcount ⁡ ( X ) = a \operatorname{popcount}(X) = a popcount(X)=a
popcount ⁡ ( Y ) = b \operatorname{popcount}(Y) = b popcount(Y)=b
X ⊕ Y = C X \oplus Y = C XY=C
Here, ⊕ \oplus denotes the bitwise XOR.
If multiple pairs ( X , Y ) (X, Y) (X,Y) satisfy the conditions, you may print any of them.

What is popcount? For a non-negative integer $x$, the popcount of $x$ is the number of $1$s in the binary representation of $x$. More precisely, for a non-negative integer $x$ such that $\displaystyle x=\sum _ {i=0} ^ \infty b _ i2 ^ i\ (b _ i\in\lbrace0,1\rbrace)$, we have $\displaystyle\operatorname{popcount}(x)=\sum _ {i=0} ^ \infty b _ i$. For example, $13$ in binary is 1101, so $\operatorname{popcount}(13)=3$. What is bitwise XOR? For non-negative integers $x, y$, the bitwise exclusive OR $x \oplus y$ is defined as follows. The $2^k$'s place $\ (k\geq0)$ in the binary representation of $x \oplus y$ is $1$ if exactly one of the $2^k$'s places $\ (k\geq0)$ in the binary representations of $x$ and $y$ is $1$, and $0$ otherwise. For example, $9$ and $3$ in binary are 1001 and 0011, respectively, so $9 \oplus 3 = 10$ (in binary, 1010). #### Constraints

0 ≤ a ≤ 60 0 \leq a \leq 60 0a60
0 ≤ b ≤ 60 0 \leq b \leq 60 0b60
KaTeX parse error: Expected 'EOF', got '&' at position 10: 0 \leq C &̲lt; 2^{60}
All input values are integers.

Input

The input is given from Standard Input in the following format:

a a a b b b C C C

Output

If there is a pair of non-negative integers that satisfies the conditions, choose one such pair ( X , Y ) (X, Y) (X,Y) and print X X X and Y Y Y in this order, with a space in between.
If no such pair exists, print -1.

Sample Input 1
3 4 7
Sample Output 1
28 27

The pair ( X , Y ) = ( 28 , 27 ) (X, Y) = (28, 27) (X,Y)=(28,27) satisfies the conditions.
Here, X X X and Y Y Y in binary are 11100 and 11011, respectively.
X X X in binary is 11100, so popcount ⁡ ( X ) = 3 \operatorname{popcount}(X) = 3 popcount(X)=3.
Y Y Y in binary is 11011, so popcount ⁡ ( Y ) = 4 \operatorname{popcount}(Y) = 4 popcount(Y)=4.
X ⊕ Y X \oplus Y XY in binary is 00111, so X ⊕ Y = 7 X \oplus Y = 7 XY=7.
If multiple pairs of non-negative integers satisfy the conditions, you may print any of them, so printing 42 45, for example, would also be accepted.

Sample Input 2
34 56 998244353
Sample Output 2
-1

No pair of non-negative integers satisfies the conditions.

Sample Input 3
39 47 530423800524412070
Sample Output 3
540431255696862041 10008854347644927

Note that the values to be printed may not fit in 32 32 32-bit integers.

Solution

具体见文末视频。


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;signed main() {cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);int a, b, c;cin >> a >> b >> c;int r1 = 0, r2 = 0;for (int i = 0; i < 61; i ++)if (c >> i & 1) {if (a > b) r1 += (1ll << i), a --;else r2 += (1ll << i), b --;}if (a != b || a < 0 || b < 0) {cout << -1 << endl;return 0;}for (int i = 0; i < 61; i ++)if (!(c >> i & 1) && a && b)r1 += (1ll << i), r2 += (1ll << i), a --, b --;if (a || b) {cout << -1 << endl;return 0;}cout << r1 << " " << r2 << endl;return 0;
}

E - Set Add Query

Problem Statement

There is an integer sequence A = ( A 1 , A 2 , … , A N ) A=(A_1,A_2,\ldots,A_N) A=(A1,A2,,AN) of length N N N, where all elements are initially set to 0 0 0. Also, there is a set S S S, which is initially empty.
Perform the following Q Q Q queries in order. Find the value of each element in the sequence A A A after processing all Q Q Q queries. The i i i-th query is in the following format:
An integer x i x_i xi is given. If the integer x i x_i xi is contained in S S S, remove x i x_i xi from S S S. Otherwise, insert x i x_i xi to S S S. Then, for each j = 1 , 2 , … , N j=1,2,\ldots,N j=1,2,,N, add ∣ S ∣ |S| S to A j A_j Aj if j ∈ S j\in S jS.
Here, ∣ S ∣ |S| S denotes the number of elements in the set S S S. For example, if S = { 3 , 4 , 7 } S=\lbrace 3,4,7\rbrace S={3,4,7}, then ∣ S ∣ = 3 |S|=3 S=3.

Constraints

1 ≤ N , Q ≤ 2 × 1 0 5 1\leq N,Q\leq 2\times10^5 1N,Q2×105
1 ≤ x i ≤ N 1\leq x_i\leq N 1xiN
All given numbers are integers.

Input

The input is given from Standard Input in the following format:

N N N Q Q Q
x 1 x_1 x1 x 2 x_2 x2 … \ldots x Q x_Q xQ

Output

Print the sequence A A A after processing all queries in the following format:

A 1 A_1 A1 A 2 A_2 A2 … \ldots A N A_N AN

Sample Input 1
3 4
1 3 3 2
Sample Output 1
6 2 2

In the first query, 1 1 1 is inserted to S S S, making S = { 1 } S=\lbrace 1\rbrace S={1}. Then, ∣ S ∣ = 1 |S|=1 S=1 is added to A 1 A_1 A1. The sequence becomes A = ( 1 , 0 , 0 ) A=(1,0,0) A=(1,0,0).
In the second query, 3 3 3 is inserted to S S S, making S = { 1 , 3 } S=\lbrace 1,3\rbrace S={1,3}. Then, ∣ S ∣ = 2 |S|=2 S=2 is added to A 1 A_1 A1 and A 3 A_3 A3. The sequence becomes A = ( 3 , 0 , 2 ) A=(3,0,2) A=(3,0,2).
In the third query, 3 3 3 is removed from S S S, making S = { 1 } S=\lbrace 1\rbrace S={1}. Then, ∣ S ∣ = 1 |S|=1 S=1 is added to A 1 A_1 A1. The sequence becomes A = ( 4 , 0 , 2 ) A=(4,0,2) A=(4,0,2).
In the fourth query, 2 2 2 is inserted to S S S, making S = { 1 , 2 } S=\lbrace 1,2\rbrace S={1,2}. Then, ∣ S ∣ = 2 |S|=2 S=2 is added to A 1 A_1 A1 and A 2 A_2 A2. The sequence becomes A = ( 6 , 2 , 2 ) A=(6,2,2) A=(6,2,2).
Eventually, the sequence becomes A = ( 6 , 2 , 2 ) A=(6,2,2) A=(6,2,2).

Sample Input 2
4 6
1 2 3 2 4 2
Sample Output 2
15 9 12 7

Solution

具体见文末视频。


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;const int N = 2e5 + 10;int n, q;
int a[N], s[N], res[N], id[N];
int cnt[N], lst[N];signed main() {cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);cin >> n >> q;int idx = 0;for (int i = 1; i <= q; i ++) {cin >> a[i];if (!id[a[i]]) id[a[i]] = ++ idx;}set<int> S;int r = 0;for (int i = 1; i <= q; i ++) {cnt[a[i]] ++;if (S.count(a[i])) S.erase(a[i]);else S.insert(a[i]);s[i] = s[i - 1] + S.size();r = max(id[a[i]], r);if (S.size()) res[1] += S.size(), res[r + 1] -= S.size();}for (int i = 1; i <= n; i ++)res[i] += res[i - 1], lst[i] = q;for (int i = q; i >= 1; i --) {if (cnt[a[i]] % 2 == 0) {res[id[a[i]]] -= (s[lst[a[i]]] - s[i - 1]);} else {lst[a[i]] = i - 1;}cnt[a[i]] --;}for (int i = 1; i <= n; i ++)cout << res[id[i]] << " ";return 0;
}

F - Non-overlapping Squares

Problem Statement

There is an N × N N\times N N×N grid, and the cell at the i i i-th row from the top and the j j j-th column from the left ( 1 ≤ i , j ≤ N ) (1\leq i,j\leq N) (1i,jN) contains the integer A i , j A _ {i,j} Ai,j.
You are given an integer M M M. When choosing three non-overlapping M × M M\times M M×M grids, find the maximum possible sum of the integers written in the chosen grids.

Formal definition of the problem A $6$-tuple of integers $(i _ 1,j _ 1,i _ 2,j _ 2,i _ 3,j _ 3)$ is called a good $6$-tuple when it satisfies the following three conditions: $1\leq i _ k\leq N-M+1\ (k=1,2,3)$ $1\leq j _ k\leq N-M+1\ (k=1,2,3)$ If $k\neq l\ (k,l\in\lbrace1,2,3\rbrace)$, the sets $\lbrace(i,j)\mid i _ k\leq i\lt i _ k+M\wedge j _ k\leq j\lt j _ k+M\rbrace$ and $\lbrace(i,j)\mid i _ l\leq i\lt i _ l+M\wedge j _ l\leq j\lt j _ l+M\rbrace$ do not intersect. Find the maximum value of $\displaystyle \sum _ {k=1} ^ 3\sum _ {i=i _ k} ^ {i _ k+M-1}\sum _ {j=j _ k} ^ {j _ k+M-1}A _ {i,j}$ for a good $6$-tuple $(i _ 1,j _ 1,i _ 2,j _ 2,i _ 3,j _ 3)$. It can be shown that a good $6$-tuple exists under the constraints of this problem. #### Constraints

2 ≤ N ≤ 1000 2\leq N\leq 1000 2N1000
1 ≤ M ≤ N / 2 1\leq M\leq N/2 1MN/2
0 ≤ A i , j ≤ 1 0 9 0\leq A _ {i,j}\leq10 ^ 9 0Ai,j109
All input values are integers.

Input

The input is given from Standard Input in the following format:

N N N M M M
A 1 , 1 A _ {1,1} A1,1 A 1 , 2 A _ {1,2} A1,2 … \ldots A 1 , N A _ {1,N} A1,N
A 2 , 1 A _ {2,1} A2,1 A 2 , 2 A _ {2,2} A2,2 … \ldots A 2 , N A _ {2,N} A2,N
⋮ \vdots ⋮ \ \vdots   ⋱ \ddots ⋮ \vdots
A N , 1 A _ {N,1} AN,1 A N , 2 A _ {N,2} AN,2 … \ldots A N , N A _ {N,N} AN,N

Output

Print the answer.

Sample Input 1
7 3
3 1 4 1 5 9 2
6 5 3 5 8 9 7
9 3 2 3 8 4 6
2 6 4 3 3 8 3
2 7 9 5 0 2 8
8 4 1 9 7 1 6
9 3 9 9 3 7 5
Sample Output 1
154

From the given grid, if we choose three 3 × 3 3\times3 3×3 grids as shown in the figure below (this corresponds to setting ( i 1 , j 1 , i 2 , j 2 , i 3 , j 3 ) = ( 1 , 5 , 2 , 1 , 5 , 2 ) (i _ 1,j _ 1,i _ 2,j _ 2,i _ 3,j _ 3)=(1,5,2,1,5,2) (i1,j1,i2,j2,i3,j3)=(1,5,2,1,5,2)), the sum of the numbers written in the chosen grids will be 154 154 154.

There is no way to make the sum 155 155 155 or greater while satisfying the conditions in the problem statement, so print 154 154 154.

Sample Input 2
7 1
3 1 4 1 5 9 2
6 5 3 5 8 9 7
9 3 2 3 8 4 6
2 6 4 3 3 8 3
2 7 9 5 0 2 8
8 4 1 9 7 1 6
9 3 9 9 3 7 5
Sample Output 2
27

The following choice is optimal.

Sample Input 3
16 4
74 16 58 32 97 52 43 51 40 58 13 24 65 11 63 29
98 75 40 77 15 50 83 85 35 46 38 37 56 38 63 55
95 42 10 70 53 40 25 10 70 32 33 19 52 79 74 58
33 91 53 11 65 63 78 77 81 46 81 63 11 82 55 62
39 95 92 69 77 89 14 84 53 78 71 81 66 39 96 29
74 26 60 55 89 35 32 64 17 26 74 92 84 33 59 82
23 69 10 95 94 14 58 58 97 95 62 58 72 55 71 43
93 77 27 87 74 72 91 37 53 80 51 71 37 35 97 46
81 88 26 79 78 30 53 68 83 28 59 28 74 55 20 86
93 13 25 19 53 53 17 24 69 14 67 81 10 19 69 90
88 83 62 92 22 31 27 34 67 48 42 32 68 14 96 87
44 69 25 48 68 42 53 82 44 42 96 31 13 56 68 83
63 87 24 75 16 70 63 99 95 10 63 26 56 12 77 49
94 83 69 95 48 41 40 97 45 61 26 38 83 91 44 31
43 69 54 64 20 60 17 15 62 25 58 50 59 63 88 70
72 95 21 28 41 14 77 22 64 78 33 55 67 51 78 40
Sample Output 3
3295

The following choice is optimal.

Solution

后期补一下这题目的视频


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;const int N = 1e3 + 10;int n, m;
int a[N][N], s[N][N], ln[N], cl[N];
int lu[N][N], ld[N][N], ru[N][N], rd[N][N];signed main() {cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);cin >> n >> m;for (int i = 1; i <= n; i ++)for (int j = 1; j <= n; j ++)cin >> a[i][j], a[i][j] += a[i][j - 1] + a[i - 1][j] - a[i - 1][j - 1];for (int i = 1; i <= n - m + 1; i ++)for (int j = 1; j <= n - m + 1; j ++) {s[i][j] = a[i + m - 1][j + m - 1] - a[i - 1][j + m - 1] - a[i + m - 1][j - 1] + a[i - 1][j - 1];ln[i] = max(ln[i], s[i][j]), cl[j] = max(cl[j], s[i][j]);}for (int i = m; i <= n; i ++)for (int j = m; j <= n; j ++)lu[i][j] = max(max(lu[i - 1][j], lu[i][j - 1]), s[i - m + 1][j - m + 1]);for (int i = n - m + 1; i >= 1; i --)for (int j = m; j <= n; j ++)ld[i][j] = max(max(ld[i + 1][j], ld[i][j - 1]), s[i][j - m + 1]);for (int i = m; i <= n; i ++)for (int j = n - m + 1; j >= 1; j --)ru[i][j] = max(max(ru[i - 1][j], ru[i][j + 1]), s[i - m + 1][j]);for (int i = n - m + 1; i >= 1; i --)for (int j = n - m + 1; j >= 1; j --)rd[i][j] = max(max(rd[i + 1][j], rd[i][j + 1]), s[i][j]);int res = 0;for (int i = 1; i <= n; i ++)for (int j = 1; j <= n; j ++) {res = max(res, lu[i][j] + ru[i][j + 1] + ld[i + 1][n]);res = max(res, lu[i][j] + ld[i + 1][j] + rd[1][j + 1]);res = max(res, ld[i][j] + rd[i][j + 1] + ru[i - 1][1]);res = max(res, ru[i][j] + rd[i + 1][j] + ld[1][j - 1]);}for (int i = m; i <= n; i ++) {int mx1 = 0, mx2 = 0;for (int j = i + m; j <= n; j ++) {mx1 = max(mx1, ln[j - m + 1]), mx2 = max(mx2, cl[j - m + 1]);res = max(res, ru[i][1] + mx1 + rd[j + 1][1]);res = max(res, ld[1][i] + mx2 + rd[1][j + 1]);}}cout << res << endl;return 0;
}

视频题解

Atcoder Beginner Contest 347(A ~ E 讲解)

欢迎大家关注我的B站空间:https://space.bilibili.com/630340560


最后祝大家早日在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/589706.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

UniApp 应用发布到苹果商店指南

&#x1f680; 想要让你的 UniApp 应用在苹果商店亮相吗&#xff1f;别着急&#xff0c;让我来带你一步步完成这个重要的任务吧&#xff01;在这篇博客中&#xff0c;我将详细介绍如何将 UniApp 应用顺利发布到苹果商店&#xff0c;让你的应用跻身于苹果生态之中。 引言 &…

奔赴智慧医院建设浪潮,迈瑞创新产品亮相中国医学装备大会

3月28日&#xff0c;第32届中国医学装备大会暨2024医学装备展览会在重庆顺利开展。迈瑞医疗以“助力医院高质量发展&#xff0c;共建智慧医院生态”为主题参展&#xff0c;多款核心零部件、创新产品及智慧医疗生态集体亮相。 满足需求&#xff0c;推动智慧医院建设提速 迈瑞医疗…

Java基于微信小程序的电子竞技信息交流系统,附源码(V2.0)

博主介绍&#xff1a;✌IT徐师兄、7年大厂程序员经历。全网粉丝15W、csdn博客专家、掘金/华为云//InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;&#x1f3…

echarts 地图 自己圈地图 乡镇街道

这个是方式是我实在不愿意做的&#xff01; 如果有现成的最好&#xff0c;没有办法的情况下再用这个东西。 今天公司有一个项目&#xff0c;地方划分了一块区域&#xff0c;但是国家没有审核&#xff0c;但是项目里面用到了一个地图展示数据&#xff01;然后就需要我们自己把…

MySQL的操作

MySQL库的操作 创建数据库 其实在之前认识数据库时就已经创建过数据库了&#xff0c;这次我们需要更深入的了解创建数据库的语句。 语法&#xff1a;create database [if not exists] db_name [create_secification] create database:这是一个关键字&#xff0c;表示创建数据库…

pieces of cake concerning torchtorchvision

1. version match torchvision的版本对应关系 2. utilize tqdm to present process bar lay a pbar from tqdm import tqdm pbar tqdm(unit"batch", filesys.stdout,totallen(self.training_dataloader)) #处理单位为batch pbar2 tqdm(range(20), descIt\s a t…

生物信息学数据库分类

生物信息学数据库 &#xff08;一&#xff09;文献数据库 1、PubMed&#xff1a;拥有超过两百六十万生物医学文献的数据库&#xff0c;这些文献来源于MEDLINE&#xff0c;也就是生物医学文献数据库、生命科学领域学术杂志、以及在线的专业书籍。链接&#xff1a;PubMed (nih.g…

游戏租赁如何利用好闲鱼获客,实现月入10000单月游戏粉引流2000+

1. 个人名片与基本信息扩展 在宝贝85的闲鱼账号中&#xff0c;我们可以看到她的个人信息非常详细。作为一名00后的女生&#xff0c;她喜欢摄影&#xff0c;就读于长沙理工大学&#xff0c;并且拥有极好的芝麻信用。这些信息有助于增加买家的信任度&#xff0c;提高交易成功率。…

iOS应用程序的签名、重签名和安装测试

目录 前言 打开要处理的IPA文件 设置签名使用的证书和描述文件 开始ios ipa重签名 前言 ipa编译出来后&#xff0c;或者ipa进行修改后&#xff0c;需要进行重新签名才能安装到测试手机&#xff0c;或者提交app store供apple 商店审核上架。ipaguard有签名和重签名功能&…

【MATLAB源码-第176期】基于matlab的16QAM调制解调系统频偏估计及补偿算法仿真,对比补偿前后的星座图误码率。

操作环境&#xff1a; MATLAB 2022a 1、算法描述 在通信系统中&#xff0c;频率偏移是一种常见的问题&#xff0c;它会导致接收到的信号频率与发送信号的频率不完全匹配&#xff0c;进而影响通信质量。在调制技术中&#xff0c;QPSK&#xff08;Quadrature Phase Shift Keyin…

基于深度学习的铁轨缺陷检测系统(网页版+YOLOv8/v7/v6/v5代码+训练数据集)

摘要&#xff1a;本文深入研究了基于YOLOv8/v7/v6/v5的铁轨缺陷检测系统。核心技术上&#xff0c;文章采用了最先进的YOLOv8&#xff0c;并整合了YOLOv7、YOLOv6、YOLOv5算法&#xff0c;进行了性能指标的对比分析。文中详细阐述了国内外铁轨缺陷检测的研究现状、数据集处理方法…

[C++初阶]初识C++(一)—————命名空间和缺省函数

声明: 本篇文献内容选自百度文库、比特就业课 代码内容部分选自比特就业课 一、命名空间 1.什么是命名空间 在编程语言中&#xff0c;命名空间是一种特殊的作用域&#xff0c;它包含了处于该作用域中的所有标示符&#xff0c;而且其本身也是由标示符表示的。命名空间的使用目…