AI学习-线性回归推导

线性回归

      • 1.简单线性回归
      • 2.多元线性回归
      • 3.相关概念熟悉
      • 4.损失函数推导
      • 5.MSE损失函数

1.简单线性回归

线性回归:有监督机器学习下一种算法思想。用于预测一个或多个连续型目标变量y与数值型自变量x之间的关系,自变量x可以是连续、离散,但是目标变量y必须连续。类似于初中的一元一次方程y = a + bx。不同的是以前可以根据两组值唯一确定a和b的关系,但是机器学习下这种算法是根据多种数据信息,计算出最优解

方程:
在这里插入图片描述
最优解:所有的样本数据都尽可能的贴合(拟合)到该方程(模型model)上方为最优解。说人话是: 我们根据样本数据,计算出很多的a、b值即为多种模型model,从多种模型中预测值Predicted value)和真实值Actual value)进行比较,误差Error越小的模型即为最优解。我们需要让机器知道什么是最优解的话,需要定义个损失函数Loss函数

字段描述
Actual value真实值,即已知的y
Predicted value预测值,是把已知的×带入到公式里面和猜出来的参数a,b计算得到的
Error误差,预测值和真实值的差距
最优解尽可能的找到一个模型使得整体的误差最小,整体的误差通常叫做损失Loss
Loss函数整体的误差,loss通过损失函数loss function计算得到

Loss 函数

平方均值损失

2.多元线性回归

​ 上面的简单线性回归影响其因素只有一个自变量X,但是在现实生活中影响y的可能有多个因素,所以多元线性回归也就用来解决这些问题。方程为:
在这里插入图片描述

上面写的过于复杂,学过数学矩阵的同学应该清楚:根据下面的图形示意图可以使用矩阵简写处理:
在这里插入图片描述

矩阵简写方程:

在这里插入图片描述

用矩阵表示符合我们机器学习相关编程语言的书写方式,便于使用编程语言实现。

3.相关概念熟悉

特征与维度

特征通常指的是影响结果或目标的一系列变量或因素,这些变量或因素构成了模型的 维度。在给定的例子中,x是由n列组成的,这些列可以看作是特征,它们共同构成了x的维度。这些特征会影响最后的结果y。

中心极限定理与正态分布

中心极限定理告诉我们,大量随机变量的总和会趋近于 正态分布

  • 中心极限定理和线性回归的关系:当使用线性回归对大量数据进行处理时,得到的结果可能会符合正态分布。

中心极限定理为线性回归提供了一个理论基础,而这种正态分布的性质,如平均值和标准差,可以被用来评估模型的性能和解释性

误差

第i个样本实际的值yi等于预测的值yihat加误差Ei,或者公式可以表达为如下
在这里插入图片描述
假定所有的样本的误差都是独立的随机变量,足够多的随机变量叠加之后形成的分布,根据中心极限定理,它服从的就是正态分布。

机器学习中我们假设误差符合均值为0,方差为定值的正态分布

最大似然估计

给定一个概率分布D,已知其概率密度函数(连续分布)或概率质量函数(离散分布)为fD以及一个分布参数0我们可以从这个分布中抽出一个具有n个值的采样 ,利用f_D计算出其似然函数:
在这里插入图片描述
若D是离散分布,f0即是在参数为0时观测到这一采样的概率。若其是连续分布,f0则为x1,x2…xn联合分布的概率密度函数在观测值处的取值。

术语对应的函数术语描述
连续分布概率密度函数连续型随机变量的概率密度函数是一个描述这个随机变量的输出值
离散分布概率质量函数离散型随机变量的概率质量函数是一个描述这个随机变量的输出值

原理:假设样本数据是由某个概率分布生成的(连续分布、离散分布),而这个分布的参数是未知的。最大似然估计的目标是找到那些能使观察值出现的概率最大的参数值。

为啥要了解最大似然估计:上边我们不是假定了误差是符合正态分布的,正态分布又是是连续分布的。如果要求出其中的误差正态分布的相关参数值(均值=0,方差=参数值),则可以通过最大似然估计计算求出。

4.损失函数推导

正态分布的概率密度函数
在这里插入图片描述

误差的概率密度函数

误差是一个均值为0,方差为定值的正态分布,所以将误差带入得出:一条样本的概率密度方程如下:
在这里插入图片描述
误差属于正态分布,而正态分布的相关参数可以通过最大似然估计算出。

正态分布最大总似然数

上述公式我们只是推导出了一条误差的概率密度函数。接下来我们就是要把最大似然函数通过正太分布概率密度函数表达出来

在这里插入图片描述
样本误差服从正态分布也服务互相独立的假设,所以我们可以把上面式子写出连乘的形式概率的公式:

在这里插入图片描述
正态分布最大似然函数
在这里插入图片描述

等于

在这里插入图片描述
引入误差公式
在这里插入图片描述

最终推导出来的误差(正态分布)最大似然函数
在这里插入图片描述

5.MSE损失函数

因为数学的推导过程比较枯燥且晦涩难懂,所以我们先基于目的梳理一遍过程:获取线性回归的最优解即最优特征值。

  1. 线性回归最优解对应最小损失函数
  2. 最小损失函数基于中心极限定理服从正态分布
  3. 正态分布获取其取值的最大概率则基于最大似然函数
  4. 得到误差最大似然函数 最终可以求解其特征值

接下来继续推导MSE损失函数。总似然最大的那一时刻对应的参数 θ当成是要求的最优解!

最大总似然

获取最大总似然函数(连乘):
在这里插入图片描述
引入对数函数

因为log对数函数中,当底大于1的时候是单调递增,获取θ的最大值可以转换为获取loge的最大值(因为使用对数函数后便于简化公式,结果还是一样的) 公式如下:

在这里插入图片描述

基于对数函数的相关运算法则进行继续推导
在这里插入图片描述
在这里插入图片描述

MSE函数
因为前面有个负号,所以最大总似然变成了最小话负号后面的部分。 到这里,我们就已经推导出来了 MSE 损失函数,从公式我们也可以看出来 MSE 名字的来 历,mean squared error也叫做最小二乘
在这里插入图片描述
那么接下来问题就是 什么时候可以使得损失函数最小了。篇幅有限-下一篇对该问题进行求解。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/589980.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

第二十一章 RabbitMQ

一、RabbitMQ 介绍 在介绍 RabbitMQ 之前,我们先来看下面一个电商项目的场景: - 商品的原始数据保存在数据库中,增删改查都在数据库中完成。 - 搜索服务数据来源是索引库(Elasticsearch),如果数据库商品…

【JavaWeb】Day32.MySQL概述

什么是数据库 数据库:英文为 DataBase,简称DB,它是存储和管理数据的仓库。 像我们日常访问的电商网站京东,企业内部的管理系统OA、ERP、CRM这类的系统,以及大家每天都会刷的头条、抖音类的app,那这些大家所…

redis之穿透、击穿、雪崩

目录 缓存雪崩 问题描述 缓存雪崩 问题描述 key 对应的数据存在,但在 redis 中过期,此时若有大量并发请求过来,这些请求发现缓存过期一般都会从后端数据库加载数据并回设到缓存,这个时候大并发的请求可能会瞬间把后端数据库压垮。…

非小米电脑下载小米电脑管家

由于 小米电脑管家 现在新增了机型验证,本篇将分享非小米电脑用户如何绕过机型验证安装 小米电脑管家 首先到小米跨端智联官网 https://hyperos.mi.com/continuity 中下载小米电脑管家 打开官网链接后,直接滑动到底部,点击下载 下载完成后…

NineData云原生智能数据管理平台新功能发布|2024年3月版

数据库 DevOps - 大功能升级 SQL 开发早期主要提供 SQL 窗口(IDE)功能,在产品经过将近两年时间的打磨,新增了大量的企业级功能,已经服务了上万开发者,覆盖了数据库设计、开发、测试、变更等生命周期的功能…

MapReduce [OSDI‘04] 论文阅读笔记

原论文:MapReduce: Simplified Data Processing on Large Clusters (OSDI’04) 1. Map and Reduce Map:处理键值对,生成一组中间键值对Reduce:合并与同一中间键相关的所有中间值process overview:分割输入数据&#x…

【环境变量】命令行参数 | 概念 | 理解 | 命令行参数表 | bash进程

目录 四组概念 命令行参数概念&理解 查看命令函参数 命令行字符串&命令行参数表 命令行参数存在的意义 谁形成的命令行参数 父进程&子进程&数据段 bash进程 最近有点小忙,可能更新比较慢。 四组概念 竞争性: 系统进程数目众多&#xff0c…

智慧展览馆:基于AI智能识别技术的视频智慧监管解决方案

一、建设背景 随着科技的不断进步和社会安全需求的日益增长,展览馆作为展示文化、艺术和科技成果的重要场所,其安全监控系统的智能化升级已成为当务之急。为此,旭帆科技(TSINGSEE青犀)基于视频智能分析技术推出了展览馆…

[学习笔记]pytorch tutorial

pytorch tutorial 1.Installation2.Tensor Basics3.Gradient Calculation With Autograd4.Back propagation5.6 Gradient Descent with Autograd and Back propagation & Train Pipeline Model, Loss, and Optimizer第一步:纯手写第二步:梯度计算使用…

镜舟科技荣获第十三届中国智能制造高峰论坛两项大奖

2024年3月29日,由e-works数字化企业网和湖北省中小企业服务中心联合主办,中国中小企业发展促进中心指导的“第十三届中国智能制造高峰论坛暨第二十一届中国智能制造岁末盘点颁奖典礼”在北京圆满落幕。本次论坛汇聚了国内外智能制造领域的专家学者、企业…

产品推荐 | 基于VIRTEX UltraScale+系列的 FACE-VU3P-B高性能FPGA开发平台

01、产品概述 FACE-VU3P-B高性能FPGA开发平台是FACE系列的新产品。FACE-VU3P-B搭载有16nm工艺的VIRTEX UltraScale系列主器件XCVU3P。该主器件具有丰富的FPGA可编程逻辑资源,其资源量高于常用的V7-690器件,并且其性能远远高于V7-690器件。 平台板载有丰…

华为ICT七力助推文化产业新质生产力发展

创新起主导作用的新质生产力由新劳动者、新劳动对象、新劳动工具、新基础设施等四大要素共同构成,符合新发展理念的先进生产力质态;具有高科技、高能效、高质量等三大突出特征。而通过壮大新产业、打造新模式、激发新动能,新质生产力能够摆脱…