yolo v5 中 letterbox对不规则矩形框的输入调整

在对数据或特征的处理中,为了避免输入图像或特征,经过resize等等操作,改变了目标特征的尺度信息,一般会引入一些操作,比如:

  1. 在特征维度,加入SPP(空间金字塔池化),这样不同大小的输入图像,经过该层的处理,输出大小都保持了一致
  2. 在输入图像阶段,也可以先采用pad的操作,补齐输入图像,避免变形

本文,就是借鉴yolo系列对输入图像前处理的一个操作,对不同大小的图像,先经过长边等比例resize后,pad到一样大小的尺寸。

具体的操作代码如下:

import cv2
import numpy as np
import matplotlib.pyplot as plt
import xml.etree.ElementTree as ETdef parse_xml(path):tree = ET.parse(path)root = tree.findall('object')class_list = []boxes_list = []for sub in root:xmin = float(sub.find('bndbox').find('xmin').text)xmax = float(sub.find('bndbox').find('xmax').text)ymin = float(sub.find('bndbox').find('ymin').text)ymax = float(sub.find('bndbox').find('ymax').text)boxes_list.append([xmin, ymin, xmax, ymax])class_list.append(sub.find('name').text)return class_list, np.array(boxes_list).astype(np.int32)def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):"""用于将输入的图像进行长边resize和填充,以满足一定的约束条件。函数的输入参数包括:im:输入的图像,可以是任意尺寸和通道数的numpy数组。new_shape:目标尺寸,可以是一个整数或一个元组。如果是一个整数,则表示将图像resize成一个正方形;如果是一个元组,则表示将图像resize成指定的宽度和高度。color:填充颜色,可以是一个整数或一个元组。如果是一个整数,则表示使用灰度值为该整数的像素进行填充;如果是一个元组,则表示使用RGB颜色值进行填充。auto:是否启用自动计算填充大小。如果为True,则会根据指定的stride值计算最小的填充大小,以满足长宽比和stride倍数的约束条件;如果为False,则会根据指定的scaleFill和scaleup参数计算填充大小。scaleFill:是否启用拉伸填充。如果为True,则会拉伸图像以填满目标尺寸;如果为False,则会根据指定的scaleup参数决定是否缩放图像。scaleup:是否允许放大图像。如果为True,则允许将输入图像放大到目标尺寸;如果为False,则只能将输入图像缩小到目标尺寸。stride:stride值,用于计算最小填充大小。"""# Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232shape = img.shape[:2]  # current shape [height, width]if isinstance(new_shape, int):new_shape = (new_shape, new_shape)# Scale ratio (new / old)r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])   # 短边ratioif not scaleup:  # only scale down, do not scale up (for better test mAP)r = min(r, 1.0)# Compute paddingratio = r, r  # width, height ratiosnew_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh paddingif auto:  # minimum rectangledw, dh = np.mod(dw, 64), np.mod(dh, 64)  # wh paddingelif scaleFill:  # stretchdw, dh = 0.0, 0.0new_unpad = (new_shape[1], new_shape[0])ratio = new_shape[1] / shape[1], new_shape[0] / shape[0]  # width, height ratiosdw /= 2  # divide padding into 2 sidesdh /= 2if shape[::-1] != new_unpad:  # resizeimg = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))left, right = int(round(dw - 0.1)), int(round(dw + 0.1))img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add borderreturn img, ratio, (dw, dh)def main(imgPath, drawBox_flag = True):xmlPath = imgPath[:-3] + 'xml'print(xmlPath, imgPath)img = cv2.imread(imgPath)labels, boxes = parse_xml(xmlPath)print(labels, boxes)img2, ratio, pad = letterbox(img.copy(), new_shape=(512, 512), auto=False, scaleup=True)sample1 = img.copy()    # origin imagesample2 = img2.copy()   # after letterbox imageprint(sample1.shape, sample2.shape)if drawBox_flag:new_boxes = np.zeros_like(boxes)new_boxes[:, 0] = ratio[0] * boxes[:, 0] + pad[0]  # pad widthnew_boxes[:, 1] = ratio[1] * boxes[:, 1] + pad[1]  # pad heightnew_boxes[:, 2] = ratio[0] * boxes[:, 2] + pad[0]new_boxes[:, 3] = ratio[1] * boxes[:, 3] + pad[1]print(new_boxes)for box in boxes:cv2.rectangle(sample1, (box[0], box[1]), (box[2], box[3]), (255, 0, 0), 1)for box_n in new_boxes:cv2.rectangle(sample2, (box_n[0], box_n[1]), (box_n[2], box_n[3]), (0, 255, 0), 1)plt.subplot(121)plt.imshow(sample1)plt.subplot(122)plt.imshow(sample2)plt.show()# cv2.imwrite(r'F:\labelImg\1.jpg', sample1)# cv2.imwrite(r'F:\labelImg\2.jpg', sample2)if __name__ == '__main__':imgPath = r'F:\labelImg\catDog.jpg'main(imgPath, drawBox_flag=True)

展示结果如下:

1
上面图像的尺寸比较的大,超过了512大小。而低于小于512大小的图像,是如何的呢?

scaleup:是否允许放大图像。

  • 如果为True,则允许将输入图像放大到目标尺寸;
  • 如果为False,则只能将输入图像缩小到目标尺寸。

scaleup=False时,如下,可以发现,原始图像并没有被放大,而是直接pad操作了。这是因为为scaleup=False时,只能将输入图像缩小到目标尺寸,无法先放大操作:

scaleup
而当scaleup=True时,如下,就发现他是先放大,然后再进行pad操作:

在这里插入图片描述

可以发现,

  • scaleup设定为False时候,只会对大于new shape的图像,进行缩放pad
  • 当为True时,就不在only scale down, do not scale up了,适用的范围更广。注释里面说是为了better test mAP

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/591761.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

信创(统信)系统上的软件安装及软件使用手册

一.各软件的安装文档 1.达梦数据库在统信系统上的安装 官方手册:https://eco.dameng.com/document/dm/zh-cn/start/install-dm-linux-prepare.html 1.1下载安装包 官网:https://www.dameng.com/list_103.html 点击”服务与合作”--> “下载中心” 这里选择对应的cpu和操作…

字节二面:为什么SpringBoot的 jar 可以直接运行?我说因为内嵌了Tomcat容器,他让我出门左转。。

引言 在传统的Java应用程序开发和部署场景中,开发者往往需要经历一系列复杂的步骤才能将应用成功部署到生产环境。例如,对于基于Servlet规范的Java Web应用,开发完成后通常会被打包成WAR格式,然后部署到像Apache Tomcat、Jetty这…

普联一面4.2面试记录

普联一面4.2面试记录 文章目录 普联一面4.2面试记录1.jdk和jre的区别2.java的容器有哪些3.list set map的区别4.get和post的区别5.哪个更安全6.java哪些集合类是线程安全的7.创建线程有哪几种方式8.线程的状态有哪几种9.线程的run和start的区别10.什么是java序列化11.redis的优…

程序员的升级打怪之路

#程序人生 写在前面 转眼间,我已经进入程序员的大门已经近4个春秋了(算上实习的话,那就是快5年了…🐶.🐶.🐶不能再展开了,再不就暴露年龄了😅)。 这段时间&#xff0c…

C语言 | Leetcode C语言题解之第7题整数反转

题目&#xff1a; 题解&#xff1a; int reverse(int x) {int rev 0;while (x ! 0) {if (rev < INT_MIN / 10 || rev > INT_MAX / 10) {return 0;}int digit x % 10;x / 10;rev rev * 10 digit;}return rev; }

50道Java经典面试题总结

1、那么请谈谈 AQS 框架是怎么回事儿&#xff1f; &#xff08;1&#xff09;AQS 是 AbstractQueuedSynchronizer 的缩写&#xff0c;它提供了一个 FIFO 队列&#xff0c;可以看成是一个实现同步锁的核心组件。 AQS 是一个抽象类&#xff0c;主要通过继承的方式来使用&#x…

动态规划详解(Dynamic Programming)

目录 引入什么是动态规划&#xff1f;动态规划的特点解题办法解题套路框架举例说明斐波那契数列题目描述解题思路方式一&#xff1a;暴力求解思考 方式二&#xff1a;带备忘录的递归解法方式三&#xff1a;动态规划 推荐练手题目 引入 动态规划问题&#xff08;Dynamic Progra…

热修复——紧急修复的大杀器

前言 在实习中&#xff0c;我有幸参与了一项关键的任务&#xff0c;即实现应用程序的热修复功能。通过这个项目&#xff0c;我学习并了解了热修复技术&#xff0c;并且亲身体验了其在移动应用开发中的重要性和实际应用。 在本文中&#xff0c;我将分享我在实习期间学到的关于热…

JAVAEE之IoCDI

Spring 是⼀个 IoC&#xff08;控制反转&#xff09;容器&#xff0c;作为容器, 那么它就具备两个最基础的功能&#xff1a; • 存 • 取 Spring 容器管理的主要是对象, 这些对象, 我们称之为"Bean". 我们把这些对象交由Spring管理, 由 Spring来负责对象的创建…

查询SQL server数据库在后台执行过的语句

查询SQL server数据库在后台执行过的语句 SELECT TOP 30000total_worker_time/1000 AS [总消耗CPU 时间(ms)],execution_count [运行次数],qs.total_worker_time/qs.execution_count/1000 AS [平均消耗CPU 时间(ms)],last_execution_time AS [最后一次执行时间],min_worker_ti…

【剑指offr--C/C++】JZ73 翻转单词序列

一、题目 二、思路及代码 这里只是单词与单词之间的顺序翻转了&#xff0c;但是单词内部顺序是正确的&#xff0c;所以&#xff1a; ①遍历字符串&#xff0c;通过空格来确定单词 ②将单词和空格依次入栈 ③依次出栈组成新的字符串 class Solution { public:string ReverseSen…

iOS-App:App Store新的审核政策,在应用隐私清单中声明和解释使用特定API的原因

App Store新的审核政策&#xff0c;在应用隐私清单中声明和解释使用特定API的原因 设备/引擎&#xff1a;Mac&#xff08;11.6&#xff09;/Mac Mini 开发工具&#xff1a;终端 开发需求&#xff1a;苹果官方邮件通知&#xff0c; App Store新的审核政策&#xff0c;在应用隐…