时序预测 | Matlab基于CFBP级联前向BP神经网络时序预测

时序预测 | Matlab基于CFBP级联前向BP神经网络时序预测

目录

    • 时序预测 | Matlab基于CFBP级联前向BP神经网络时序预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab基于CFBP级联前向BP神经网络时序预测(完整源码和数据);
2.数据集为excel,单列时间序列数据集,运行主程序main.m即可,其余为函数文件,无需运行;
3.优化参数为神经网络的权值和偏置,命令窗口输出RMSE、MAPE、MAE、R2等评价指标;
4.运行环境Matlab2018b及以上;
5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

程序设计

  • 完整源码和数据获取方式私信博主回复Matlab基于CFBP级联前向BP神经网络时序预测
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据(时间序列的单列数据)
result = xlsread('data.xlsx');%%  数据分析
num_samples = length(result);  % 样本个数 
kim = 4;                      % 延时步长(kim个历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测%%  划分数据集
for i = 1: num_samples - kim - zim + 1res(i, :) = [reshape(result(i: i + kim - 1), 1, kim), result(i + kim + zim - 1)];
end%% 数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train,0,1);
p_test = mapminmax('apply',P_test,ps_input);[t_train, ps_output] = mapminmax(T_train,0,1);
t_test = mapminmax('apply',T_test,ps_output);%% 节点个数
inputnum  = size(p_train, 1); % 输入层节点数
hiddennum = 15;                % 隐藏层节点数
outputnum = size(t_train, 1); % 输出层节点数
% CSDN 机器学习之心

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/593346.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

STM32CubeMX配置步骤详解五 —— 基础配置(2)

接前一篇文章:STM32CubeMX配置步骤详解四 —— 基础配置(1) 本文内容主要参考: STM32CUBEMX配置教程(一)基础配置-CSDN博客 特此致谢! 三、STM32CubeMX基础配置 上一回讲解了STM32CubeMX基础…

瑞吉外卖实战学习--14、菜品上传

添加菜品接口 前言效果图1、菜品分类查询接口2、上传图片和下载图片3、创建接收数据的Dto4、创建提交的方法 前言 本项目gitee位置:gitee网址 本篇文章是学习了添加菜品的总结,其中包括菜品分类的接口,图片上传接口,数据整体上传…

【每日力扣】198.打家劫舍与213.打家劫舍II与337.打家劫舍 III

🔥 个人主页: 黑洞晓威 😀你不必等到非常厉害,才敢开始,你需要开始,才会变的非常厉害 198.打家劫舍 力扣题目链接(opens new window) 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金&…

C语言基础语法-教案16(从小白到劝退之结构体初阶)

最近给大家争取到一个 深夜福利 保证你在深夜手机刷到 嘎嘎香~ 那就是 大流量卡 缺点:月租太便宜 185GB~ 100分钟通话时长~ 长期套餐~ 畅想自由的气息 流量自由的同时还拥有超长通话,而且免费领取。 名额有限,咱们废话不多说直接上…

主干网络篇 | YOLOv5/v7 更换骨干网络之 HGNetv2 | 百度新一代超强主干网络

本改进已融入到 YOLOv5-Magic 框架。 论文地址:https://arxiv.org/abs/2304.08069 代码地址:https://github.com/PaddlePaddle/PaddleDetection 中文翻译:https://blog.csdn.net/weixin_43694096/article/details/131353118 文章目录 HGNetv2网络结构1.1 主干网络1.2 颈部…

Flink运行机制相关概念介绍

Flink运行机制相关概念介绍 1. 流式计算和批处理2. 流式计算的状态与容错3. Flink简介及其在业务系统中的位置4. Flink模型5. Flink的架构6. Flink的重要概念7. Flink的状态、状态分区、状态缩放(rescale)和Key Group8. Flink数据交换9. 时间语义10. 水位…

1.Spring Boot框架整合

Spring Boot项目创建&#xff08;约定大于配置&#xff09; 2.1.3.RELEASE版本示例 idea创建 从官网下载&#xff08;https://start.spring.io/&#xff09;单元测试默认依赖不对时&#xff0c;直接删除即可 Web支持&#xff08;SpringMVC&#xff09; <dependency>&…

RabbitMQ3.13.x之九_Docker中安装RabbitMQ

RabbitMQ3.13.x之_Docker中安装RabbitMQ 文章目录 RabbitMQ3.13.x之_Docker中安装RabbitMQ1. 官网2. 安装1 .拉取镜像2. 运行容器 3. 访问 1. 官网 rabbitmq - Official Image | Docker Hub 2. 安装 1 .拉取镜像 docker pull rabbitmq:3.13.0-management2. 运行容器 # lates…

Vue3(学自尚硅谷)

一、基础准备工作 &#xff08;一&#xff09;过程 环境要求&#xff1a;有node.js环境、npm。执行命令&#xff1a; npm create vuelatest 而后选择&#xff1a; ✔ 请输入项目名称&#xff1a; … me_vue3 ✔ 是否使用 TypeScript 语法&#xff1f; … 否 / 是 ✔ 是否启用…

2024最新版Android studio安装入门教程(非常详细)

目录 JDK安装与配置 一、下载JDK 二、JDK安装 三、JDK的环境配置 四、JDK的配置验证 Android studio安装 Android studio连接手机真机调试&#xff08;以华为鸿蒙为例&#xff09; 一、新建一个android项目 二、进入项目面板 三、配置Android Studio 四、安装手机驱…

Going deeper with Image Transformers

1、引言 论文链接&#xff1a; https://openaccess.thecvf.com/content/ICCV2021/papers/Touvron_Going_Deeper_With_Image_Transformers_ICCV_2021_paper.pdf 由于目前对图像 Transformer[1] 的优化问题研究很少&#xff0c;Hugo Touvron 等[2] 构建和优化了更深的用于图像分…

mysql故障排查

MySQL是目前企业最常见的数据库之一日常维护管理的过程中&#xff0c;会遇到很多故障汇总了常见的故障&#xff0c;MySQL默认配置无法满足高性能要求 一 MySQL逻辑架构图 客户端和连接服务核心服务功能存储擎层数据存储层 二 MySQL单实例常见故障 故障1 ERROR 2002 (HY000)…