基于Python近红外光谱分析与机器学、深度学习方法融合技术应用

郁磊副教授,主要从事MATLAB 编程、机器学习与数据挖掘、数据可视化和软件开发、人工智能近红外光谱分析、生物医学系统建模与仿真,具有丰富的实战应用经验,主编《MATLAB智能算法30个案例分析》、《MATLAB神经网络43个案例分析》相关著作。已发表多篇高水平的国际学术研究论文。

第一章、Python入门基础

1、Python环境搭建( 下载、安装与版本选择)。

2、如何选择Python编辑器?(IDLE、Notepad++、PyCharm、Jupyter…)

3、Python基础(数据类型和变量、字符串和编码、list和tuple、条件判断、循环、函数的定义与调用等)

4、常见的错误与程序调试

5、第三方模块的安装与使用

6、文件读写(I/O)

7、实操

第二章、Python进阶与提高

1、Numpy模块库(Numpy的安装;ndarray类型属性与数组的创建;数组索引与切片;Numpy常用函数简介与使用)

2、Pandas模块库(DataFrame数据结构、表格的变换、排序、拼接、融合、分组操作等)

3、Matplotlib基本图形绘制(线形图、柱状图、饼图、气泡图、直方图、箱线图、散点图等)

4、图形的布局(多个子图绘制、规则与不规则布局绘制、向画布中任意位置添加坐标轴)

5、Scikit-Learn模块库简介、下载与安装

6、实操

第三章、多元线性回归及其在近红外光谱分析中的应用

1、多元线性回归模型(工作原理、最小二乘法)

2、岭回归模型(工作原理、岭参数k的选择、用岭回归选择变量)

3、LASSO模型(工作原理、特征选择、建模预测、超参数调节)

4、Elastic Net模型(工作原理、建模预测、超参数调节)

5、多元线性回归、岭回归、LASSO、Elastic Net的Python代码实现

6、案例演示:近红外光谱回归拟合建模

第四章、BP神经网络及其在近红外光谱分析中的应用

1、BP神经网络的基本原理(人工智能发展过程经历了哪些曲折?人工神经网络的分类有哪些?BP神经网络的拓扑结构和训练过程是怎样的?什么是梯度下降法?BP神经网络建模的本质是什么?)

2、怎样划分训练集和测试集?为什么需要归一化?归一化是必须的吗?BP神经网络的常用激活函数有哪些?如何查看模型的参数?

3、BP神经网络参数的优化(隐含层神经元个数、学习率、初始权值和阈值等如何设置?什么是交叉验证?)

4、值得研究的若干问题(欠拟合与过拟合、泛化性能评价指标的设计、样本不平衡问题等)

5、极限学习机(Extreme Learning Machine, ELM)的基本原理(ELM的基本算法,“极限”体现在哪些地方?ELM 与 BP 神经网络的区别与联系)

6、BP神经网络、极限学习机的Python代码实现

7、案例演示:

1)近红外光谱回归拟合建模;

2)近红外光谱分类识别建模

第五章、支持向量机(SVM)及其在近红外光谱分析中的应用

1、SVM的基本原理(什么是经验误差最小和结构误差最小?SVM的本质是解决什么问题?SVM的四种典型结构是什么?核函数的作用是什么?什么是支持向量?)

2、SVM扩展知识(如何解决多分类问题?SVM除了建模型之外,还可以帮助我们做哪些事情?SVM的启发:样本重要性的排序及样本筛选)

3、SVM的Python代码实现

4、案例演示:近红外光谱分类识别建模

第六章、决策树、随机森林、Adaboost、XGBoost和LightGBM及其在近红外光谱分析中的应用

1、决策树的基本原理(微软小冰读心术的启示;什么是信息熵和信息增益?ID3算法和C4.5算法的区别与联系)

2、决策树的启发:变量重要性的排序及变量筛选

3、随机森林的基本原理与集成学习框架(为什么需要随机森林算法?广义与狭义意义下的“随机森林”分别指的是什么?“随机”提现在哪些地方?随机森林的本质是什么?)

4、Bagging与Boosting集成策略的区别

5、Adaboost算法的基本原理

6、Gradient Boosting Decision Tree (GBDT)模型的基本原理

7、XGBoost与LightGBM简介

8、决策树、随机森林、Adaboost、XGBoost与LightGBM的Python代码实现

9、案例演示:近红外光谱回归拟合建模

第七章、遗传算法及其在近红外光谱分析中的应用

1、群优化算法概述

2、遗传算法(Genetic Algorithm)的基本原理(什么是个体和种群?什么是适应度函数?选择、交叉与变异算子的原理与启发式策略)

3、遗传算法的Python代码实现

4、案例演示:基于二进制遗传算法的近红外光谱波长筛选

第八章、变量降维与特征选择算法及其在近红外光谱分析中的应用

1、主成分分析(PCA)的基本原理

2、偏最小二乘(PLS)的基本原理(PCA与PLS的区别与联系;PCA除了降维之外,还可以帮助我们做什么?)

3、近红外光谱波长选择算法的基本原理(Filter和Wrapper;前向与后向选择法;区间法;无信息变量消除法等)

4、PCA、PLS的Python代码实现

5、特征选择算法的Python代码实现

6、案例演示:

1)基于L1正则化的近红外光谱波长筛选

2)基于信息熵的近红外光谱波长筛选

3)基于Recursive feature elimination的近红外光谱波长筛选

4)基于Forward-SFS的近红外光谱波长筛选

第十章、卷积神经网络及其在近红外光谱分析中的应用

1、深度学习与传统机器学习的区别与联系(神经网络的隐含层数越多越好吗?深度学习与传统机器学习的本质区别是什么?)

2、卷积神经网络的基本原理(什么是卷积核?CNN的典型拓扑结构是怎样的?CNN的权值共享机制是什么?CNN提取的特征是怎样的?)

3、卷积神经网络参数调试技巧

4、卷积神经网络的Python代码实现

5、案例演示:基于卷积神经网络的近红外光谱建模

第十一章、迁移学习及其在近红外光谱分析中的应用

1、迁移学习算法的基本原理(为什么需要迁移学习?为什么可以迁移学习?迁移学习的基本思想是什么?)

2、常用的迁移学习算法简介(基于实例、特征和模型,譬如:TrAdaboost算法)

3、基于卷积神经网络的迁移学习算法

4、迁移学习的Python代码实现

5、案例演示:基于迁移学习的近红外光谱的模型传递(模型移植)

第十二章、自编码器及其在近红外光谱分析中的应用

1、自编码器(Auto-Encoder的工作原理)

2、常见的自编码器类型简介(降噪自编码器、深度自编码器、掩码自编码器等)

3、自编码器的Python代码实现

4、案例演示:

1)基于自编码器的近红外光谱数据预处理

2)基于自编码器的近红外光谱数据降维与有效特征提取

第十三章、复习与答疑

1、复习与总结(知识点梳理)

2、资料分享(图书、在线课程资源、源代码等)

3、科研与创新方法总结(如何利用Google Scholar、Sci-Hub、ResearchGate等工具查阅文献资料、配套的数据和代码?如何更好地撰写论文的Discussion部分?如果在算法层面上难以做出原创性的工作,如何结合实际问题提炼与挖掘创新点?)

原文链接icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=MzUyNzczMTI4Mg==&mid=2247637090&idx=5&sn=3d8cf7ba5f41b6985e877705f17e6672&chksm=fa77875fcd000e495935c98a9c4a3493171d41252c228a18f9eee67de59339248a5092dac07a&token=1814394799&lang=zh_CN&scene=21#wechat_redirect

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/593846.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LangChain学习笔记—RAG(检索增强生成)

LangChain LangChain是一个软件开发框架,可以更轻松地使用大型语言模型(LLM)创建应用程序。它是一个具有 Python 和 JavaScript 代码库的开源工具。LangChain 允许开发人员将 GPT-4 等 LLM 与外部数据相结合,为聊天机器人、代码理…

怎样把学浪购买的课程下载下来

如何把学浪已购买的课程下载下来?这里就教大家一个方法,利用一个工具轻轻松松把视频下载下来 这个工具我打包成压缩包了,有需要的自己取一下 链接:https://pan.baidu.com/s/1y7vcqILToULrYApxfEzj_Q?pwdkqvj 提取码:kqvj --来自百度网盘超级会员V1…

Cisco交换机安全配置

Cisco交换机安全配置 前提 我们以下命令一般都要先进入Config模式 S1> enable S1# conf t S1(config)#端口安全保护 禁用未使用的端口 以关闭fa0/1到fa0/24的端口为例 S1(config)# interface range fa0/1-24 S1(config-if-range)# shutdown缓解MAC地址表攻击 防止CAM…

【爬虫开发】爬虫从0到1全知识md笔记第3篇:数据提取概要,知识点【附代码文档】

爬虫开发从0到1全知识教程完整教程(附代码资料)主要内容讲述:爬虫课程概要,爬虫基础爬虫概述,,http协议复习。requests模块,requests模块1. requests模块介绍,2. response响应对象,3. requests模块发送请求,4. request…

【游戏逆向】逆向基础之发包函数和线程发包

网络游戏是需要服务器的,这样才能玩家之间,服务器和玩家之间进行通信。 所以,我们的很多动作,都是要向服务器发包的,那么我们只要能够锁定正确的发包函数,就能很容易的通过调用关系找到该动作的函数&…

【GEE实践应用】GEE下载遥感数据以及下载后在ArcGIS中的常见显示问题处理(以下载哨兵2号数据为例)

本期内容我们使用GEE进行遥感数据的下载,使用的相关代码如下所示,其中table是我们提前导入的下载遥感数据的研究区域的矢量边界数据。 var district table;var dsize district.size(); print(dsize);var district_geometry district.geometry();Map.…

基于卷积神经网络的中药识别(pytorch框架)【python源码+UI界面+前端界面+功能源码详解】

原作者链接:基于卷积神经网络的中药识别(pytorch框架)【python源码UI界面前端界面功能源码详解】_识别中药python-CSDN博客 //gitcode,gitee,飞桨,csdn,bilibili。几个有用网站,直接搜索即可,平…

软件质量保证计划书

1 概述 2 质量目标 3 项目基本情况 4 资源 4.1 人员 4.1.1 组织结构 4.1.2 职责 4.2 工具及设施 5 质量保证的主要工作 6 质量保证工作量估算 7 质量保证工作提交的产物 8 变更管理 9 评价标准 10 形成的记录 软件全资料获取进主页或者本文末个人名片直接获取。

keycloak - 鉴权VUE

目录 一、前言 1、背景 2、实验版本 二、开始干活 1、keycloak配置 a、创建领域(realms) b、创建客户端 c、创建用户、角色 2、vue代码 a、依赖 b、main.js 三、未解决的问题 目录 一、前言 1、背景 2、实验版本 二、开始干活 1、keycloak配置 a、创建领域(r…

大模型生成RAG评估数据集并计算hit_rate 和 mrr

文章目录 背景简介代码实现公开参考资料 背景 最近在做RAG评估的实验,需要一个RAG问答对的评估数据集。在网上没有找到好用的,于是便打算自己构建一个数据集。 简介 本文使用大模型自动生成RAG 问答数据集。使用BM25关键词作为检索器,然后…

WPS 不登录无法使用基本功能的解决办法

使用wps时,常常有个比较让人烦恼的事,在不登录的情况下,新建或者打开文档时,wps不让你使用其基本的功能,如设置字体等,相关界面变成灰色,这时Wps提示用户登录注册或登录,但我又不想登…

UTONMOS:AI+Web3+元宇宙数字化“三位一体”将触发经济新爆点

人工智能、元宇宙、Web3,被称为数字化的“三位一体”,如何看待这三大技术所扮演的角色? 3月24日,2024全球开发者先锋大会“数字化的三位一体——人工智能、元宇宙、Web3.0”论坛在上海漕河泾开发区举行,首次提出&…