Octopus V2:设备端super agent的高级语言模型

  • 论文:Octopus v2: On-device language model for super agent
  • 论文地址:https://arxiv.org/abs/2404.01744
  • 模型主页:https://huggingface.co/NexaAIDev/Octopus-v2

Octopus-V2-2B

Octopus-V2-2B 是一款具有20亿参数的开源先进语言模型,它体现了Nexa AI在将大型语言模型(LLM)应用于函数调用方面的研究成果,并且是针对Android API特别设计的。与传统的检索增强生成(RAG)方法不同,后者在处理潜在的函数参数时需要进行详尽的描述(有时涉及数万个输入标记),Octopus-V2-2B在训练和推理过程中采用了独特的函数标记策略。这种策略不仅让它能够与GPT-4的性能相媲美,还大幅提升了推理速度,优于基于RAG的方法。这一改进特别适合边缘计算设备,使得Octopus-V2-2B在这些平台上更具优势

📱设备端应用程序:Octopus-V2-2B 旨在与 Android 设备完美兼容,其应用范围广泛,涵盖了从 Android 系统管理到多设备协调等多个方面。

🚀推理速度:在基准测试中,Octopus-V2-2B 表现出了卓越的推理速度,在单个 A100 GPU 上的性能比“Llama7B + RAG 解决方案”组合高出 36 倍。此外,与依赖集群 A100/H100 GPU 的 GPT-4-turbo (gpt-4-0125-preview) 相比,Octopus-V2-2B 速度提高了 168%。这种效率归功于我们的functional token设计。

20 亿参数的 Octopus v2 可以在智能手机、汽车、个人电脑等端侧运行,在准确性和延迟方面超越了 GPT-4,并将上下文长度减少了 95%。此外,Octopus v2 比 Llama7B + RAG 方案快 36 倍。

🐙准确度:Octopus-V2-2B 不仅在速度上表现出色,而且在准确度上也表现出色,在函数调用准确度上超越“Llama7B + RAG 方案”31%。它实现了与 GPT-4 和 RAG + GPT-3.5 相当的函数调用精度,在基准数据集上的得分范围在 98% 到 100% 之间。

💪函数调用功能:Octopus-V2-2B 能够在各种复杂场景中生成单独的、嵌套的和并行的函数调用。

示例用例

您可以在 GPU 上使用以下代码来运行模型。

from transformers import AutoTokenizer, GemmaForCausalLM
import torch
import timedef inference(input_text):start_time = time.time()input_ids = tokenizer(input_text, return_tensors="pt").to(model.device)input_length = input_ids["input_ids"].shape[1]outputs = model.generate(input_ids=input_ids["input_ids"], max_length=1024,do_sample=False)generated_sequence = outputs[:, input_length:].tolist()res = tokenizer.decode(generated_sequence[0])end_time = time.time()return {"output": res, "latency": end_time - start_time}model_id = "NexaAIDev/Octopus-v2"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = GemmaForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto"
)input_text = "Take a selfie for me with front camera"
nexa_query = f"Below is the query from the users, please call the correct function and generate the parameters to call the function.\n\nQuery: {input_text} \n\nResponse:"
start_time = time.time()
print("nexa model result:\n", inference(nexa_query))
print("latency:", time.time() - start_time," s")

评估

基准测试结果可以在这个excel中查看,这是手动验证的。基准测试中的所有查询均由 Gemini 采样。

Octopus-V2-2B 在基准测试中表现出卓越的推理速度,在单个 A100 GPU 上比「Llama7B + RAG 解决方案」快 36 倍。此外,与依赖集群 A100/H100 GPU 的 GPT-4-turbo 相比,Octopus-V2-2B 速度提高了 168%。这种效率突破归功于 Octopus-V2-2B 的函数性 token 设计。

图片

Octopus-V2-2B 不仅在速度上表现出色,在准确率上也表现出色,在函数调用准确率上超越「Llama7B + RAG 方案」31%。Octopus-V2-2B 实现了与 GPT-4 和 RAG + GPT-3.5 相当的函数调用准确率。

图片

注意:人们可以注意到查询包括用于函数的所有必需参数。预计查询也包括推理期间的所有参数。

数据集

为了训练、验证和测试阶段采用高质量数据集,特别是实现高效训练,研究团队用三个关键阶段创建数据集:

  • 生成相关的查询及其关联的函数调用参数;
  • 由适当的函数组件生成不相关的查询; 
  • 通过 Google Gemini 实现二进制验证支持。

图片

训练数据

该研究采用 Google Gemma-2B 模型作为框架中的预训练模型,并采用两种不同的训练方法:完整模型训练和 LoRA 模型训练。

在完整模型训练中,该研究使用 AdamW 优化器,学习率设置为 5e-5,warm-up 的 step 数设置为 10,采用线性学习率调度器。

LoRA 模型训练采用与完整模型训练相同的优化器和学习率配置,LoRA rank 设置为 16,并将 LoRA 应用于以下模块:q_proj、k_proj、v_proj、o_proj、up_proj、down_proj。其中,LoRA alpha 参数设置为 32。

对于两种训练方法,epoch 数均设置为 3。

我们编写了 20 个 Android API 描述用于训练模型,请参阅此文件了解详细信息。我们的演示的 Android API 实现以及我们的训练数据将在稍后发布。下面是一个Android API描述示例

def get_trending_news(category=None, region='US', language='en', max_results=5):"""Fetches trending news articles based on category, region, and language.Parameters:- category (str, optional): News category to filter by, by default use None for all categories. Optional to provide.- region (str, optional): ISO 3166-1 alpha-2 country code for region-specific news, by default, uses 'US'. Optional to provide.- language (str, optional): ISO 639-1 language code for article language, by default uses 'en'. Optional to provide.- max_results (int, optional): Maximum number of articles to return, by default, uses 5. Optional to provide.Returns:- list[str]: A list of strings, each representing an article. Each string contains the article's heading and URL."""

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/599521.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Elastic AI Assistant for Observability 和 Microsoft Azure OpenAI 入门

作者:来自 Elastic Jonathan Simon 最近,Elastic 宣布 AI 观测助手现已正式向所有 Elastic 用户开放。该 AI 观测助手为 Elastic 观测提供了一种新工具,提供了大型语言模型(LLM)连接的聊天和上下文洞察,以解…

代码学习记录37----动态规划

随想录日记part37 t i m e : time: time: 2024.04.06 主要内容:今天开始要学习动态规划的相关知识了,今天的内容主要涉及四个方面: 完全背包;零钱兑换 II ;组合总和 Ⅳ 和单词拆分 …

YoloV8改进策略:Neck改进改进|ELA

摘要 本文使用最新的ELA注意力机制改进YoloV8,实现涨点!改进方式简单易用,涨点明显!欢迎大家使用。 大家在订阅专栏后,记着加QQ群啊!有些改进方法确实有难度,大家在改进的过程中遇到问题&#…

Django之静态文件及模板语法(上)

Python学习之路系列文章目录 python面向对象之警察与匪徒火拼场景模拟python面向对像之第二次笔记Django环境搭建及测试第1个Django应用及Django的请求处理Django之静态文件及模板语法(上) 静态文件及模板语法 Python学习之路系列文章目录一、静态文件1.…

绝地求生:在小小的花园里面挖呀挖呀挖~ 29.1版本将支持可破坏地形功能

嗨,我是闲游盒~ 想必大家也都知道了新版本即将上线的可破坏地形功能即将在29.1版本上线,而具体的玩法暂时没有公布~ ◆ 随着离4月10日越来越近,官方发布了一条关于新版本可破坏地形的玩法预告 注意看,这个男人叫小帅,正…

基于SpringBoot的“自习室预订系统”的设计与实现(源码+数据库+文档+PPT)

基于SpringBoot的“自习室预订系统”的设计与实现(源码数据库文档PPT) 开发语言:Java 数据库:MySQL 技术:SpringBoot 工具:IDEA/Ecilpse、Navicat、Maven 系统展示 管理员登录界面 座位预订管理界面图 自习室管理…

宏集PLC如何为楼宇自动化行业提供空调、供暖与通风的解决方案?

一、应用背景 楼宇自动化行业是通过将先进的技术和系统应用于建筑物中,以提高其运营效率、舒适度和能源利用效率的行业,其目标是使建筑物能够自动监控、调节和控制各种设备和系统,包括照明系统、空调系统、安全系统、通风系统、电力供应系统…

STC89C51学习笔记(五)

STC89C51学习笔记(五) 综述:文本讲述了代码中速写模板的创建、如何将矩阵键盘的按键与数字一一对应以及如何创建一个矩阵键盘密码锁。 一、速写模板 点击“templates”,再鼠标右键选择配置,按照以下方式即可修改一些…

【Vue】我的第一个组件

文章目录 项目简介 项目简介 项目根目录中的index.html是项目的入口文件 加载index.html,vite解析。指向的src下的ts文件或者js文件 最后通过vue3的createApp函数创建一个应用,并挂载到指定div下 App.vue结构说明 特别注意:script脚本内&#xff0…

Chat2DB

序言 日常开发中,我们可能会用到MyBatis Generator自动生成Entity实体类、DAO接口以及对应的Mapper文件可以减少一部分的冗余代码开发量,随着AI的发展,可以将自然语言转换为SQL语句,例如ChatSQL、阿里的Chat2DB等。 Chat2DB简介…

缓存击穿以及解决方案

1.定义 缓存击穿问题也叫热点Key问题,就是一个被高并发访问并且缓存重建业务较复杂的key突然失效了,无数的请求访问会在瞬间给数据库带来巨大的冲击。 问题描述:假设线程1在查询缓存之后,本来应该去查询数据库,然后把…

linux离线安装redis

一、下载linux版本压缩包 地址:Download | Redis 为了安全稳定性,下载 6.2 版本,不下载最新版 二、上传到linux服务器 笔者上传到 /opt/redis下 ,使用Xftp和Xshell工具,使用root权限 cd /opt sudo mkdir redis cd r…