FJSP:美洲狮优化算法(Puma Optimizar Algorithm ,POA)求解柔性作业车间调度问题(FJSP),提供MATLAB代码

一、柔性作业车间调度问题

柔性作业车间调度问题(Flexible Job Shop Scheduling Problem,FJSP),是一种经典的组合优化问题。在FJSP问题中,有多个作业需要在多个机器上进行加工,每个作业由一系列工序组成,每个工序需要在特定的机器上完成。同时,每个机器一次只能处理一个工序,且每个工序的处理时间可能不同。

FJSP问题的目标是找到一个最优的作业调度方案,使得所有作业的完成时间最小化。这个问题的难点在于需要考虑到多个作业、多个机器和多个工序之间的复杂关系,并且需要在有限的时间内找到最优解。

解决FJSP问题的方法包括启发式算法、精确算法和元启发式算法等。启发式算法通过一系列规则和策略来生成调度方案,常见的方法有遗传算法、模拟退火算法和禁忌搜索算法等。精确算法则通过穷举搜索或者动态规划等方法来找到最优解,但在实际应用中可能面临计算复杂度过高的问题。元启发式算法则结合了多种启发式算法和精确算法的优点,通过组合不同的方法来求解FJSP问题。
FJSP问题的难点主要体现在以下几个方面:

  1. 组合爆炸:FJSP问题中,每个工件都有多个工序需要完成,而每个工序都有多个可选的机器可以执行。这导致了组爆炸的问题,可能的调度方案数量非常庞,难以穷举所有可能性。

  2. 优化目标多样:FJSP问题通常有多个优化目标,如最小化总加权完成时间、最小化总延迟时间等。这些目标之间可能存在冲突,使找到一个全局最优解变得困难。

  3. 资源约束:FJSP问题中,每个机器在同一时间只能执行一个工序,且每个工序需要一定的时间和资源。这些资源约束增加了问题的复杂性,需要在满足约束条件的前提下进行调度。

  4. 实时性要求:在实际生产中,FJSP问题通常需要考虑实时性要求,即要求在有限的时间内生成一个可行的调度方案。这增加了问题的难度,需要在有限时间内找到一个较优的解。

柔性作业车间调度问题( FJSP) 的描述如下:n个工件 { J , J 2 , . . , J n } \{J,J_2,..,J_n\} {J,J2,..,Jn}要在 m m m 台机器 { M 1 , M 2 , . . , M m } \{M_1,M_2,..,M_m\} {M1,M2,..,Mm} 上加工。每个工件包含一道或多道工序,工序顺序是预先确定的,每道工序可以在多台不同加工机器上进行加工,工序的加工时间随加工机器的不同而不同。调度目标是为每道工序选择最合适的机器、确定每台机器上各个工序的最佳加工顺序以及开工时间,使整个系统的某些性能指标达到最优。因此,柔性作业车间调度问题包含两个子问题:确定各工件的加工机器 (机器选择子问题) 和确定各个机器上的加工先后顺序 (工序排序子问题)。

此外,在加工过程中还需要满足下面的约束条件:
(1) 同一台机器同一时刻只能加工一个工件;
(2) 同一工件的同一道工序在同一时刻只能被一台机器加工;
(3) 每个工件的每道工序一旦开始加工不能中断;
(4) 不同工件之间具有相同的优先级;
(5)不同工件的工序之间没有先后约束,同一工件的工序之间有先后约束;
(6)所有工件在零时刻都可以被加工。

1.1符号描述

n : n: n:工件总数;
m : m: m: 机器总数;
i , e : i,e: i,e: 机器序号, i , e = 1 , 2 , 3 , . . . , m i,e=1,2,3,...,m i,e=1,2,3,...,m ;
j , k : j,k: j,k: 工件序号, j , k = 1 , 2 , 3 , . . . , n ; j,k=1,2,3,...,n; j,k=1,2,3,...,n; h j : h_j: hj:工件 j j j 的工序总数;
h , l : h,l: h,l: 工序序号, h = 1 , 2 , 3 , . . . , h j h=1,2,3,...,h_j h=1,2,3,...,hj ;
Ω j h : \Omega_{jh}: Ωjh:工件 j j j 的第 h h h 道工序的可选加工机器集;
m j h : m_{jh}: mjh:工件 j j j 的第 h h h 道工序的可选加工机器数;
O j h : O_{jh}: Ojh:工件 j j j 的第 h h h道工序;
M i j h : M_{ijh}: Mijh:工件 j j j 的第 h h h道工序在机器 i i i 上加工;
p i j h : p_{ijh}: pijh:工件 j j j的第 h h h道工序在机器 i i i上的加工时间;
s j h : s_{jh}: sjh:工件 j j j 的第 h h h 道工序加工开始时间;
c j h : c_{jh}: cjh:工件 j j j的第 h h h道工序加工完成时间;
d j : d_j: dj:工件 j j j 的交货期;
L L L: 一个足够大的正数;
C j C_j Cj: 每个工件的完成时间;
C max ⁡ : C_{\max}: Cmax: 最大完工时间;
T o : T o = ∑ j = 1 n h j T_o:\quad T_o=\sum_{j=1}^nh_j To:To=j=1nhj, 所有工件工序总数;
x i j h = { 1 , 如果工序 O j h 选择机器 i ; 0 , 否则; x_{ijh}=\begin{cases}1,\text{如果工序}O_{jh}\text{选择机器}i;\\0,\text{否则;}\end{cases} xijh={1,如果工序Ojh选择机器i;0,否则;
y i j h k l = { 1 , 如果 O i j h 先于 O i k l 加工 ; 0 , 否则 ; y_{ijhkl}=\begin{cases}1,\text{如果}O_{ijh}\text{先于}O_{ikl}\text{加工};\\0,\text{否则};\end{cases} yijhkl={1,如果Oijh先于Oikl加工;0,否则;

1.2约束条件

C 1 : s j h + x i j h × p i j h ≤ c j h C_{1}:s_{jh}+x_{ijh}\times p_{ijh}\leq c_{jh} C1:sjh+xijh×pijhcjh

其中: i = 1 , … , m ; j = 1 , … , n ; i=1,\ldots,m;j=1,\ldots,n; i=1,,m;j=1,,n; h = 1 , … , h j h=1,\ldots,h_j h=1,,hj
C 2 : c j h ≤ s j ( h + 1 ) C_{2}:c_{jh}\leq s_{j(h+1)} C2:cjhsj(h+1)
其中 : j = 1 , … , n ; h = 1 , . . . , h j − 1 :j=1,\ldots,n;h=1,...,h_j-1 :j=1,,n;h=1,...,hj1
C 3 : c j h j ≤ C max ⁡ C_{3}:c_{jh_j}\leq C_{\max} C3:cjhjCmax
其中: j = 1 , . . . , n j=1,...,n j=1,...,n
C 4 : s j h + p i j h ≤ s k l + L ( 1 − y i j h k l ) C_{4}:s_{jh}+p_{ijh}\leq s_{kl}+L(1-y_{ijhkl}) C4:sjh+pijhskl+L(1yijhkl)

其中 : j = 0 , … , n ; k = 1 , … , n ; h = 1 , … , h j ; l = 1 , … , h k ; i = 1 , … , m :j=0,\ldots,n;k=1,\ldots,n;h=1,\ldots,h_j;l=1,\ldots,h_k;i=1,\ldots,m :j=0,,n;k=1,,n;h=1,,hj;l=1,,hk;i=1,,m
C 5 : c j h ≤ s j ( h + 1 ) + L ( 1 − y i k l j ( h + 1 ) ) C_{5}:c_{jh}\leq s_{j(h+1)}+L(1-y_{iklj(h+1)}) C5:cjhsj(h+1)+L(1yiklj(h+1))

其中 : j = 1 , … , n ; k = 0 , … , n ; h = 1 , … , h j − 1 ; l = 1 , … , h k ; i = 1 , … , m :j=1,\ldots,n;k=0,\ldots,n;h=1,\ldots,h_j-1;\quad l=1,\ldots,h_k;\quad i=1,\ldots,m :j=1,,n;k=0,,n;h=1,,hj1;l=1,,hk;i=1,,m
h 1 : ∑ i = 1 m j h x i j h = 1 h_{1}:\sum_{i=1}^{m_{jh}}x_{ijh}=1 h1:i=1mjhxijh=1
其中: h = 1 , . . . , h j ; j = 1 , . . . , n ; h=1,...,h_j;j=1,...,n; h=1,...,hj;j=1,...,n;

h 2 : ∑ j = 1 n ∑ h = 1 h j y i j h k l = x i k l h_{2}:\sum_{j=1}^n\sum_{h=1}^{h_j}y_{ijhkl}=x_{ikl} h2:j=1nh=1hjyijhkl=xikl

其中: i = 1 , … , m ; k = 1 , … , n ; l = 1 , … , h k i=1,\ldots,m;k=1,\ldots,n;l=1,\ldots,h_k i=1,,m;k=1,,n;l=1,,hk
h 3 : ∑ i = 1 n ∑ i = 1 n k y i j h k l = x i j h h_{3}:\sum_{i=1}^n\sum_{i=1}^{n_k}y_{ijhkl}=x_{ijh} h3:i=1ni=1nkyijhkl=xijh

其中: i = 1 , … , m ; j = 1 , … , n ; h = 1 , … , h k i=1,\ldots,m;j=1,\ldots,n;\quad h=1,\ldots,h_k i=1,,m;j=1,,n;h=1,,hk
C 6 : s j h ≥ 0 , c j h ≥ 0 C_{6}:s_{jh}\geq0,c_{jh}\geq0 C6:sjh0,cjh0

其中 : j = 0 , 1 , . . . , n ; h = 1 , . . . , h j :j=0,1,...,n;h=1,...,h_j :j=0,1,...,n;h=1,...,hj

C 1 C_{1} C1 C 2 C_{2} C2表示每一个工件的工序先后顺序约束 ;
C 3 C_{3} C3表示工件的完工时间的约束,即每一个工件的完工时间不可能超过总的完工时间 ;
C 4 C_{4} C4 C 5 C_{5} C5表示同一时刻同一台机器只能加工一道工序 ;
h 1 h_{1} h1表示机器约束,即同一时刻同一道工序只能且仅能被一台机器加工;
h 2 h_{2} h2 h 3 h_{3} h3表示存在每一台机器上可以存在循环操作 ;
C 6 C_{6} C6表示各个参数变量必须是正数。

1.3目标函数

FJSP的目标函数是最大完工时间最小。完工时间是每个工件最后一道工序完成的时间,其中最大的那个时间就是最大完工时间(makespan)。它是衡量调度方案的最根本指标, 主要体现车间的生产效率,如下式所示:

f = min ⁡ ( max ⁡ l ≤ j ≤ n ( C j ) ) f=\min(\max_{\mathrm{l\leq}j\leq n}(C_j)) f=min(maxljn(Cj))

参考文献:
[1]张国辉.柔性作业车间调度方法研究[D].华中科技大学,2009.

二、算法简介

美洲狮优化算法(Puma Optimizar Algorithm ,POA)由Benyamin Abdollahzadeh等人于2024年提出,其灵感来自美洲狮的智慧和生活。在该算法中,在探索和开发的每个阶段都提出了独特而强大的机制,这提高了算法对各种优化问题的性能。此外,该算法还提出了一种新型的智能机制,即相变的超启发式机制(PI),使用这种机制,PO算法可以在优化操作期间执行相变操作,并平衡探索和开发,同时探索和开发都会根据问题的性质自动调整。

参考文献:

[1]Abdollahzadeh, B., Khodadadi, N., Barshandeh, S. et al. Puma optimizer (PO): a novel metaheuristic optimization algorithm and its application in machine learning. Cluster Comput (2024). Puma optimizer (PO): a novel metaheuristic optimization algorithm and its application in machine learning | Cluster Computing
原文链接:https://blog.csdn.net/2401_82411023/article/details/136609644

三、算法求解FJSP

3.1部分代码

dim=2*sum(operaNumVec);
LB = -jobNum * ones(1, dim);
UB = jobNum * ones(1, dim);
Max_iteration = 100;
SearchAgents_no = 100;
fobj=@(x)fitness(x, MachineNum,jobNum,jobInfo,operaNumVec,candidateMachine);%% 优化算法求解FJSP
[fMin , bestX, Convergence_curve ] = POA(SearchAgents_no,Max_iteration,LB,UB,dim,fobj);
machineTable=GetMachineTable(bestX, MachineNum,jobNum,jobInfo,operaNumVec,candidateMachine);%% 画收敛曲线图
figure
plot(Convergence_curve,'r-','linewidth',2)
xlabel('迭代次数')
ylabel('最大完工时间')
legend('POA')
saveas(gca,'1.jpg');

3.2部分结果

在这里插入图片描述
在这里插入图片描述

四、完整MATLAB代码

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/599935.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

蓝桥杯刷题day14——盖印章【算法赛】

一、问题描述 小 Z 喜欢盖印章。 有一天,小 Z 得到了一个 nm 的网格图,与此同时,他的手上有两种印章(分别称为 A,B),如下图所示。 他想将这两种印章盖在这个网格图上。 由于小 Z 是一个有原则的人,他将按照以下规则进行操作。 每个印章所形成的图案的边必须和网格图…

加州大学欧文分校英语基础语法专项课程01:Word Forms and Simple Present Tense 学习笔记

Word Forms and Simple Present Tense Course Certificate 本文是学习Coursera上 Word Forms and Simple Present Tense 这门课程的学习笔记。 文章目录 Word Forms and Simple Present TenseWeek 01: Introduction & BE VerbLearning Objectives Word FormsWord Forms (P…

CCIE-10-IPv6-TS

目录 实验条件网络拓朴 环境配置开始Troubleshooting问题1. R25和R22邻居关系没有建立问题2. 去往R25网络的下一跳地址不存在、不可用问题3. 去往目标网络的下一跳地址不存在、不可用 实验条件 网络拓朴 环境配置 在我的资源里可以下载(就在这篇文章的开头也可以下…

【leetcode】动态规划::前缀和

标题:【leetcode】前缀和 水墨不写bug 正文开始: (一)简单前缀和 描述 给定一个长度为n的数组a1​,a2​,....an​. 接下来有q次查询, 每次查询有两个参数l, r. 对于每个询问, 请输出al​al1​....ar​ 输入描述: 第一…

yarn集群部署

yarn集群部署案例 我们来基于一个案例讲解yarn集群部署 我们要部署yarn集群,需要分别部署HDFS文件系统及YARN集群 Hadoop HDFS分布式文件系统,我们会启动: NameNode进程作为管理节点DataNode进程作为工作节点SecondaryNamenode作为辅助 同…

微信小程序实现滚动标签

使用scroll-view标签可实现组件滚动标签 1、list中 list.wxml代码如下: <!--pages/list/list.wxml--> <navigation-bartitle"小程序" back"{{false}}"color"black" background"#FFF"></navigation-bar><scroll-…

Kibana管理ES生命周期

希望通过Kibana界面管理ES索引的生命周期 版本&#xff1a;7.15.2 创建索引模板 创建索引模板方便匹配索引&#xff0c;对匹配到的一批索引采用同一套生命周期管理策略&#xff0c;例如开发环境的所有索引以dev-开头&#xff0c;可以创建样式为dev-*的索引模板以匹配开发环境…

13 Python进阶:pip及其他常用模块

pip 是 Python 包管理工具&#xff0c;它提供了对 Python 包的查找、下载、安装、卸载的功能。 包地址&#xff1a; https://pypi.org/ 最新的 Python 版本已经预装了 pip。 pip 各种命令 查看是否已经安装 pip 可以使用以下命令&#xff1a; pip --version下载安装包使用…

42.基于SpringBoot + Vue实现的前后端分离-服装销售平台管理系统(项目 + 论文)

项目介绍 随着计算机技术的发展以及计算机网络的逐渐普及&#xff0c;互联网成为人们查找信息的重要场所&#xff0c;二十一世纪是信息的时代&#xff0c;所以信息的交换和信息流通显得特别重要。因此&#xff0c;开发合适的服装销售平台成为企业必然要走的一步棋。开发合适的服…

医疗器械FDA | 常见的网络安全材料发补问题都有哪些?

FDA网络安全资料发补咨询点此​​获取https://work.weixin.qq.com/ca/cawcde5ee29d239046 ————————--- 01 安全文档编写问题 FDA网络安全文档编写格式、内容、可读性等未满足官方要求&#xff0c;则将可能被要求发补整改编写后的文档。 02 安全管理问题 a. 网络安…

websocket实践

文章目录 背景WebSocket API使用场景优点 实例步骤 1: 设置 WebSocket 服务器步骤 2: 创建客户端 HTML 页面步骤 3: 测试 WebSocket 通信注意事项实际操作 参考资料 WebSocket 是一种在单个 TCP 连接上进行全双工通信的协议。它使得浏览器和服务器只需建立一个连接&#xff0c;…

怎么保证缓存与数据库的最终一致性?

目录 零.读数据的标准操作 一.Cache aside Patten--旁路模式 二.Read/Write Through Pattern--读写穿透 三.Write Back Pattern--写回 四.运用canal监听mysql的binlog实现缓存同步 零.读数据的标准操作 这里想说的是不管哪种模式读操作都是一样的&#xff0c;这是一种统一…