代码随想录阅读笔记-二叉树【删除二叉搜索树节点】

题目

给定一个二叉搜索树的根节点 root 和一个值 key,删除二叉搜索树中的 key 对应的节点,并保证二叉搜索树的性质不变。返回二叉搜索树(有可能被更新)的根节点的引用。

一般来说,删除节点可分为两个步骤:

首先找到需要删除的节点; 如果找到了,删除它。 说明: 要求算法时间复杂度为 $O(h)$,h 为树的高度。

示例:

450.删除二叉搜索树中的节点

思路 

搜索树的节点删除要比节点增加复杂的多,有很多情况需要考虑

递归

递归三部曲:

1、确定递归函数参数以及返回值

TreeNode* deleteNode(TreeNode* root, int key)

2、确定终止条件

遇到空返回,其实这也说明没找到删除的节点,遍历到空节点直接返回了

if (root == nullptr) return root;

3、确定单层递归的逻辑

这里就把二叉搜索树中删除节点遇到的情况都搞清楚。

有以下五种情况:

  • 第一种情况:没找到删除的节点,遍历到空节点直接返回了
  • 找到删除的节点
    • 第二种情况:左右孩子都为空(叶子节点),直接删除节点, 返回NULL为根节点
    • 第三种情况:删除节点的左孩子为空,右孩子不为空,删除节点,右孩子补位,返回右孩子为根节点
    • 第四种情况:删除节点的右孩子为空,左孩子不为空,删除节点,左孩子补位,返回左孩子为根节点
    • 第五种情况:左右孩子节点都不为空,则将删除节点的左子树头结点(左孩子)放到删除节点的右子树的最左面节点的左孩子上,返回删除节点右孩子为新的根节点。

第五种情况有点难以理解,看下面动画:

450.删除二叉搜索树中的节点

动画中的二叉搜索树中,删除元素7, 那么删除节点(元素7)的左孩子就是5,删除节点(元素7)的右子树的最左面节点是元素8。

将删除节点(元素7)的左孩子放到删除节点(元素7)的右子树的最左面节点(元素8)的左孩子上,就是把5为根节点的子树移到了8的左孩子的位置。

要删除的节点(元素7)的右孩子(元素9)为新的根节点。.

这样就完成删除元素7的逻辑,最好动手画一个图,尝试删除一个节点试试。

代码如下:

if (root->val == key) {// 第二种情况:左右孩子都为空(叶子节点),直接删除节点, 返回NULL为根节点// 第三种情况:其左孩子为空,右孩子不为空,删除节点,右孩子补位 ,返回右孩子为根节点if (root->left == nullptr) return root->right;// 第四种情况:其右孩子为空,左孩子不为空,删除节点,左孩子补位,返回左孩子为根节点else if (root->right == nullptr) return root->left;// 第五种情况:左右孩子节点都不为空,则将删除节点的左子树放到删除节点的右子树的最左面节点的左孩子的位置// 并返回删除节点右孩子为新的根节点。else {TreeNode* cur = root->right; // 找右子树最左面的节点while(cur->left != nullptr) {cur = cur->left;}cur->left = root->left; // 把要删除的节点(root)左子树放在cur的左孩子的位置TreeNode* tmp = root;   // 把root节点保存一下,下面来删除root = root->right;     // 返回旧root的右孩子作为新rootdelete tmp;             // 释放节点内存(这里不写也可以,但C++最好手动释放一下吧)return root;}
}

这里相当于把新的节点返回给上一层,上一层就要用 root->left 或者 root->right接住,代码如下:

if (root->val > key) root->left = deleteNode(root->left, key);
if (root->val < key) root->right = deleteNode(root->right, key);
return root;

整体代码如下:(注释中:情况1,2,3,4,5和上面分析严格对应)

class Solution {
public:TreeNode* deleteNode(TreeNode* root, int key) {if (root == nullptr) return root; // 第一种情况:没找到删除的节点,遍历到空节点直接返回了if (root->val == key) {// 第二种情况:左右孩子都为空(叶子节点),直接删除节点, 返回NULL为根节点if (root->left == nullptr && root->right == nullptr) {///! 内存释放delete root;return nullptr;}// 第三种情况:其左孩子为空,右孩子不为空,删除节点,右孩子补位 ,返回右孩子为根节点else if (root->left == nullptr) {auto retNode = root->right;///! 内存释放delete root;return retNode;}// 第四种情况:其右孩子为空,左孩子不为空,删除节点,左孩子补位,返回左孩子为根节点else if (root->right == nullptr) {auto retNode = root->left;///! 内存释放delete root;return retNode;}// 第五种情况:左右孩子节点都不为空,则将删除节点的左子树放到删除节点的右子树的最左面节点的左孩子的位置// 并返回删除节点右孩子为新的根节点。else {TreeNode* cur = root->right; // 找右子树最左面的节点while(cur->left != nullptr) {cur = cur->left;}cur->left = root->left; // 把要删除的节点(root)左子树放在cur的左孩子的位置TreeNode* tmp = root;   // 把root节点保存一下,下面来删除root = root->right;     // 返回旧root的右孩子作为新rootdelete tmp;             // 释放节点内存(这里不写也可以,但C++最好手动释放一下吧)return root;}}if (root->val > key) root->left = deleteNode(root->left, key);if (root->val < key) root->right = deleteNode(root->right, key);return root;}
};
普通二叉树的删除方式

这里我在介绍一种通用的删除,普通二叉树的删除方式(没有使用搜索树的特性,遍历整棵树),用交换值的操作来删除目标节点。

代码中目标节点(要删除的节点)被操作了两次:

  • 第一次是和目标节点的右子树最左面节点交换。
  • 第二次直接被NULL覆盖了。

思路有点绕,感兴趣的同学可以画图自己理解一下。

代码如下:(关键部分已经注释)

class Solution {
public:TreeNode* deleteNode(TreeNode* root, int key) {if (root == nullptr) return root;if (root->val == key) {if (root->right == nullptr) { // 这里第二次操作目标值:最终删除的作用return root->left;}TreeNode *cur = root->right;while (cur->left) {cur = cur->left;}swap(root->val, cur->val); // 这里第一次操作目标值:交换目标值其右子树最左面节点。}root->left = deleteNode(root->left, key);root->right = deleteNode(root->right, key);return root;}
};

这个代码是简短一些,思路也巧妙,但是不太好想,实操性不强,推荐第一种写法!

迭代法

删除节点的迭代法还是复杂一些的,但其本质我在递归法里都介绍了,最关键就是删除节点的操作

代码如下:

class Solution {
private:// 将目标节点(删除节点)的左子树放到 目标节点的右子树的最左面节点的左孩子位置上// 并返回目标节点右孩子为新的根节点// 是动画里模拟的过程TreeNode* deleteOneNode(TreeNode* target) {if (target == nullptr) return target;if (target->right == nullptr) return target->left;TreeNode* cur = target->right;while (cur->left) {cur = cur->left;}cur->left = target->left;return target->right;}
public:TreeNode* deleteNode(TreeNode* root, int key) {if (root == nullptr) return root;TreeNode* cur = root;TreeNode* pre = nullptr; // 记录cur的父节点,用来删除curwhile (cur) {if (cur->val == key) break;pre = cur;if (cur->val > key) cur = cur->left;else cur = cur->right;}if (pre == nullptr) { // 如果搜索树只有头结点return deleteOneNode(cur);}// pre 要知道是删左孩子还是右孩子if (pre->left && pre->left->val == key) {pre->left = deleteOneNode(cur);}if (pre->right && pre->right->val == key) {pre->right = deleteOneNode(cur);}return root;}
};
总结

读完本篇,大家会发现二叉搜索树删除节点比增加节点复杂的多。

因为二叉搜索树添加节点只需要在叶子上添加就可以的,不涉及到结构的调整,而删除节点操作涉及到结构的调整

这里我们依然使用递归函数的返回值来完成把节点从二叉树中移除的操作。

这里最关键的逻辑就是第五种情况(删除一个左右孩子都不为空的节点),这种情况一定要想清楚

而且就算想清楚了,对应的代码也未必可以写出来,所以这道题目既考察思维逻辑,也考察代码能力

递归中我给出了两种写法,推荐大家学会第一种(利用搜索树的特性)就可以了,第二种递归写法其实是比较绕的。

最后我也给出了相应的迭代法,就是模拟递归法中的逻辑来删除节点,但需要一个pre记录cur的父节点,方便做删除操作。

迭代法其实不太容易写出来,所以如果是初学者的话,彻底掌握第一种递归写法就够了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/600251.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[通俗易懂]《动手学强化学习》学习笔记1-第1章 初探强化学习

文章目录 前言第1章 初探强化学习1.1 简介序贯决策&#xff08;sequential decision making&#xff09;任务&#xff1a;强化学习与有监督学习或无监督学习的**区别**&#xff1a;改变未来 1.2 什么是强化学习环境交互与有监督学习的区别1&#xff1a;改变环境 &#xff08;说…

网易邮箱删除指定邮箱

一、 背景&#xff1a; 我们平时经常会收到很多恶意或者一些不重要的邮件&#xff0c;并且经常会堆满邮箱&#xff0c;导致看邮箱的时间一堆未读邮件&#xff0c;手动删除一些不重要的邮件需要一个一个的去点击&#xff0c;并且还要去判断是指定的发件人的邮件&#xff0c;像…

02-JDK新特性-try-with-resources自动管理资源关闭

try-with-resources 为什么要介绍这个了 看看一下以下代码&#xff1a; public static void fileCopyByTryWithResources(File src, File des) throws IOException {try (FileInputStream fis new FileInputStream(src); FileOutputStream fos new FileOutputStream(des);…

Mysql底层原理七:InnoDB 行记录

1.行格式 1.1 Compact行格式 1.1.1 示意图 1.1.2 准备一下 1&#xff09;建表 mysql> CREATE TABLE record_format_demo (-> c1 VARCHAR(10),-> c2 VARCHAR(10) NOT NULL,-> c3 CHAR(10),-> c4 VARCHAR(10)-> ) CHARSETascii ROW_FORMATCOM…

GIS与数字孪生共舞,打造未来智慧场景

作为一名数字孪生资深用户&#xff0c;近日我深刻理解到GIS&#xff08;地理信息系统&#xff09;在构建数字孪生体中的关键作用。 数字孪生技术旨在构建现实世界的虚拟镜像&#xff0c;而GIS则是这一镜像中不可或缺的空间维度框架和导航灯塔。数字孪生的核心是通过数字化方式…

写一个宏,可以将一个整数二进制奇数位和偶数位交换详解

何为一个整数二进制奇数位和偶数位 想要完成解题&#xff0c;我们首先要知道一个整数二进制奇数位和偶数位&#xff0c;具体代表着哪一位 对于一个32位的整型&#xff0c;它的下标是从 0 ~ 31 的&#xff0c;总共32位。 其中下表为0的位是最右边的位&#xff08;即最低有效位…

入门微调预训练Transformer模型

大家好&#xff0c;HuggingFace 为众多开源的自然语言处理&#xff08;NLP&#xff09;模型提供了强大的支持平台&#xff0c;让这些模型能够通过训练和微调来更好地服务于各种特定的应用场景。在大型语言模型&#xff08;LLM&#xff09;迅猛发展的今天&#xff0c;HuggingFac…

qt 打印日志

在 Qt Creator 中&#xff0c;将 QDebug、QInfo、QWarning、QCritical 和 QFatal 打印的日志输出到指定文件&#xff0c;需要设置 Qt 的消息处理机制。这通常涉及到安装一个自定义的消息处理器&#xff0c;该处理器将日志消息重定向到文件。以下是一个基本的步骤指南&#xff1…

第九届蓝桥杯大赛个人赛省赛(软件类)真题C 语言 A 组-航班时间

#include<iostream> using namespace std;int getTime(){int h1, h2, m1, m2, s1, s2, d 0;//d一定初始化为0&#xff0c;以正确处理不跨天的情况 scanf("%d:%d:%d %d:%d:%d (%d)", &h1, &m1, &s1, &h2, &m2, &s2, &d);return d …

【JAVASE】带你了解面向对象三大特性之一(多态)

✅作者简介&#xff1a;大家好&#xff0c;我是橘橙黄又青&#xff0c;一个想要与大家共同进步的男人&#x1f609;&#x1f609; &#x1f34e;个人主页&#xff1a;再无B&#xff5e;U&#xff5e;G-CSDN博客 1.多态 1.1 多态的概念 多态的概念&#xff1a;通俗来说&#…

MySQL的基本查询

&#x1f4df;作者主页&#xff1a;慢热的陕西人 &#x1f334;专栏链接&#xff1a;MySQL &#x1f4e3;欢迎各位大佬&#x1f44d;点赞&#x1f525;关注&#x1f693;收藏&#xff0c;&#x1f349;留言 本博客主要内容介绍了mysql的基本查询部分的知识&#xff0c;包括Crea…

WebAPI(一)之DOM操作元素属性和定时器

webAPI之DOM操作元素属性和定时器 介绍概念DOM 树DOM 节点document 获取DOM对象操作元素内容操作元素属性常用属性修改控制样式属性操作表单元素属性自定义属性 间歇函数今日单词 了解 DOM 的结构并掌握其基本的操作&#xff0c;体验 DOM 的在开发中的作用 知道 ECMAScript 与 …