中颖51芯片学习3. 定时器

中颖51芯片学习3. 定时器

  • 一、SH79F9476定时器简介
    • 1. 简介
    • 2. 定时器运行模式
  • 二、定时器2
    • 1. 说明
      • (1)时钟
      • (2)工作模式
    • 2. 寄存器
      • (1)控制寄存器 T2CON
      • (2)定时器2模式控制寄存器 T2MOD
    • 3. 工作方式0
      • (1)16位捕获说明
      • (2)代码实现
    • 4. 工作方式1
      • (1)16位自动重载定时器说明
        • 当DCEN = 0,通过在T2CON中的EXEN2位选择两个选项。
        • 设置DCEN位允许定时器2递增计数或递减计数。当DCEN = 1时,T2EX引脚控制计数的方向,而EXEN2控制无效。
      • (2)代码实现
    • 5. 工作方式2 可编程时钟输出
      • (1)功能介绍
      • (2)软件实现
  • 三、其它定时器介绍
    • 1. 定时器3
    • 2. 定时器4
      • 启用 TIMER4_OUT
      • 启用 TIMER4_EDGETRIG
    • 3. 定时器5

一、SH79F9476定时器简介

1. 简介

SH79F9476芯片具有多个定时器模块,包括定时器/计数器、PWM(脉冲宽度调制)定时器等,定时器可以配置为在计时达到特定值时触发中断,以便处理紧急事件或执行特定的任务。

2. 定时器运行模式

  1. MODE0 16位捕捉模式;
  2. MODE1 16位重载方式;
  3. MODE2 可编程时钟输出模式
  4. 上升沿多次触发模式

具体地看,SH79F9476 有定时器 2,定时器 3,定时器 4 和定时器 5 四个定时器,其中:

  • 定时器 2 可配置为 16 位捕捉功能、16 位重载方式或可编程时钟输出方式;
  • 定时器 3 可配置为 16 位自动重载定时/计数器,且可以工作在掉电模式;
  • 定时器 4 可配置为 16 位自动重载定时器或带边沿触发的 16 位自动重载定时器;两个数据寄存器TH4和TL4可作为一个16位寄存器来访问;
  • 定时器 5 可配置为 16 位的自动重载定时器。

二、定时器2

1. 说明

定时器2有两个数据寄存器TH2和TL2,可以作为一个16位寄存器来使用,由寄存器T2CON和T2MOD控制;
定时器2的中断使能位是: IEN0寄存器中的ET2位。

(1)时钟

C/T2选择系统时钟(定时器)或外部引脚 T2 (计数器)作为定时器时钟输入。通过所选的引脚设置TR2允许定时器2/计数器2数据寄存器计数。
可配置寄存器T2MOD中的TCLKP2位选择系统时钟或系统时钟的1/12作为定时器2的时钟源。

(2)工作模式

定时器2支持3种工作方式:

  • 捕获/重载
  • 带递增或递减计数器的自动重载方式
  • 可编程时钟输出

可以通过寄存器配置定时器2的工作方式:

C/T2T2OEDCENTR2CP/RL2方式描述
X0X11016位捕获
X0010116位自动重载定时器
X0110116位自动重载定时器
01X1X2可编程时钟
11X1X不推荐使用
XXX0XX定时器2停止,T2EX通路仍旧允许

2. 寄存器

(1)控制寄存器 T2CON

C8H第7 位第6 位第5 位第4 位第3 位第2 位第1 位第0 位
T2CONTF2EXF2--EXEN2TR2C/T2CP/RL2
读/ 写读/写读/写--读/写读/写读/写读/写
复位值(POR/WDT/LVR/PIN)00--0000

位功能:

位编号位符号说明
7TF2定时器2 溢出标志位
0:无溢出(必须由软件清0)
1:溢出(由硬件设1)
6EXF2T2EX 引脚外部事件输入(下降沿)被检测到的标志位
0:无外部事件输入(必须由软件清0)
1:检测到外部输入(如果EXEN2 = 1,由硬件设1)
3EXEN2T2EX 引脚上的外部事件输入(下降沿)用作重载/ 捕获触发器允许/ 禁止控制位
0:忽略T2EX引脚上的事件
1:检测到T2EX引脚上一个下降沿,产生一个捕获或重载
2TR2定时器2 开始/ 停止控制位
0:停止定时器2
1:开始定时器2
1C/T2定时器2 定时器/ 计数器方式选定位
0:定时器方式,T2引脚用作I/O端口
1:计数器方式,内部上拉电阻被打开
0CP/RL2捕获/ 重载方式选定位
0:16位带重载功能的定时器/计数器
1:16位带捕获功能的定时器/计数器

(2)定时器2模式控制寄存器 T2MOD

C9H76543210
T2MODTCLKP2----T2OEDCEN
读/写读/写读/写----读/写读/写
复位值(POR/WDT/LVR/PIN)0-----00

位定义:

位编号位符号说明
7TCLKP2分频选择控制位
0:选择系统时钟的1/12作为定时器2的时钟源
1:系统时钟作为定时器2的时钟源
1T2OE定时器2 输出允许位
0:设置P1.3/T2作为时钟输入或I/O端口
1:设置P1.3/T2作为时钟输出
0DCEN递减计数允许位
0:禁止定时器2作为递增/递减计数器,定时器2仅作为递增计数器
1:允许定时器2作为递增/递减计数器

3. 工作方式0

(1)16位捕获说明

16位的捕获模式下,T2CON按制寄存器的EXEN2位有两个选项:

  • 0:定时器2作为16位定时器或计数器,如果ET2被允许,定时器2能设置TF2溢出产生一个中断;
  • 1:定时器操作与上相同,另外在外部输入T2EX上的下降沿也能引起在TH2和TL2中的当前值分别被捕获到RCAP2H和RCAP2L中;此外,在T2EX上的下降沿也能引起在T2CON中的EXF2被设置; 如果ET2被允许,EXF2位也像TF2一样产生一个中断。

流程框图:
在这里插入图片描述

(2)代码实现

下面的测试让TIMER2工作在16位捕获模式,系统时钟 Option 选择“内部 128kHz RC 振荡器作为振荡器 1,24MHz 内部 RC 作为振荡器 2”,如图所示:
在这里插入图片描述
测试代码:

#include "SH79F9476.h"
#include "cpu.h"
#include "intrins.h"
#include "api_ext.h"void main()
{// 时钟设置高速模式CLKCON = 0x08;Delay();CLKCON |= 0x04;// P0.0,P0.1设置为输出P0CR = 0x03;P0 = 0x00;// TIMER2 16位捕获模式// 允许所有中断IEN0 |= 0x80;// 打开定时器2中断IEN1 |= 0x04;// 检测到T2EX 引脚上一个下降沿,产生一个捕获或重载T2CON = 0x08;// 设置定时器2工作在捕获模式T2CON |= 0x01;// 设置系统时钟12分频作为定时器时钟源T2MOD = 0x00;TL2 = 0x00;TH2 = 0x00;// BIT2 启动定时器T2CON |= 0x04; while(1);
}
// TIMER2的中断
void INT_TIMER2(void) interrupt 9{_push_(INSCON);Select_Bank0();// 定时器溢出if(T2CON & 0x80){// 溢出标志位清0T2CON &= 0x7F;// 翻转P0_0P0_0 = ~P0_0;}	// 检测到外部事件下降沿if(T2CON & 0x40){// 1011 1111, T2EX引脚外部事件被检测到的标志位清0T2CON &= 0xBF;// 翻转P0_1P0_1 = ~P0_1;}_pop_(INSCON);
}

测试代码中启动 T2EX(P1_1) 下降沿捕捉功能;全速运行后,T2EX(P1_1)口灌 1kHz 座号,观察:

  • P1_1 的下降沿 P0_1 状态会发生改变,频率为 500Hz。
  • P0_0 频率1000/0xFFFF(即65535),约为15.259Hz。

输入信号:
在这里插入图片描述

P0_1输出信号:
在这里插入图片描述
P0_0输出信号:
在这里插入图片描述

4. 工作方式1

(1)16位自动重载定时器说明

在16位自动重载方式下,定时器2可以被选为递增计数或递减计数。这个功能通过T2MOD中的DCEN位(递减计数允许)选择。

系统复位后,DCEN位复位值为0,定时器2默认递增计数。当设置DCEN时,定时器2递增计数或递减计数取决于T2EX引脚上的电平。

当DCEN = 0,通过在T2CON中的EXEN2位选择两个选项。
  • 如果EXEN2 = 0,定时器2递增到0FFFFH,在溢出后置起TF2位,同时定时器自动将用户软件写好的寄存器RCAP2H和
    RCAP2L的16位值装入TH2和TL2寄存器。
  • 如果EXEN2 = 1,溢出或在外部输入T2EX上的下降沿都能触发一个16位重载,置起EXF2位。如果ET2被使能,TF2和EXF2
    位都能产生一个中断。
    在这里插入图片描述
设置DCEN位允许定时器2递增计数或递减计数。当DCEN = 1时,T2EX引脚控制计数的方向,而EXEN2控制无效。
  • T2EX置1可使定时器2递增计数。定时器向0FFFFH溢出,然后设置TF2位。溢出也能分别引起RCAP2H和RCAP2L上的16
    位值重载入定时器寄存器。
  • T2EX清0可使定时器2递减计数。当TH2和TL2的值等于RCAP2H和RCAP2L的值时,定时器溢出。置起TF2位,同时0FFFFH
    重载入定时器寄存器。

无论定时器2溢出,EXF2位都被用作结果的第17位。在此工作方式下,EXF2不作为中断标志。

(2)代码实现

下面代码示例中,系统时钟 Option 选择“内部 128kHz RC 振荡器作为振荡器 1,24MHz 内部 RC 作为振荡器 2”,启动自动重载功能;
程序启动后,在P0_0引脚输出1k频率方波。
P0 端口翻转一次的时间为:
t = (0xFFFF-TH2TL2)1/24 us。
计算频率为: 1/(t
2) Hz

#include "SH79F9476.h"
#include "cpu.h"
#include "intrins.h"
#include "api_ext.h"void main()
{// 时钟设置高速模式CLKCON = 0x08;Delay();CLKCON |= 0x04;// P0.0,P0.1设置为输出P0CR = 0x03;P0 = 0x00;// 允许所有中断IEN0 |= 0x80;// 打开定时器2中断 IEN1 |= 0x04;// 设置定时器工作在重载模式,忽略T2EX引脚检测T2CON = 0;    // 选择定时器为递增定时器,时钟源为系统时钟(未使用1/12分频)T2MOD = 0x80; // 这里 0xD11F递增到0xFFFF溢出,差值12000,下面公式里24是频率24M// 定时12000*1/24=500usTL2 = 0x1F;   TH2 = 0xD1;// 重载计数器 ValueRCAP2L = 0x1F; RCAP2H = 0xD1;// 启动定时器T2CON |= 0x04; while (1);
}
// TIMER2的中断
void INT_TIMER2(void) interrupt 9
{_push_(INSCON);Select_Bank0();// 定时器溢出if (T2CON & 0x80){// 溢出标志位清0T2CON &= 0x7F;// 翻转P0_0P0_0 = ~P0_0;}// 检测到外部事件下降沿if (T2CON & 0x40){// 1011 1111, T2EX引脚外部事件被检测到的标志位清0T2CON &= 0xBF;// 翻转P0_1P0_1 = ~P0_1;}_pop_(INSCON);
}

在这里插入图片描述

5. 工作方式2 可编程时钟输出

(1)功能介绍

T2端口可以编程输出50%的占空比时钟周期。清C/T2位和置T2OE位,使定时器2作为时钟发生器。TR2位启动和中止定时器。

时钟频率为:
F = 1 2 ∗ 2 ∗ f S Y S 65536 − [ R C A P 2 H , R C A P 2 L ] F = \frac{1}{2*2} * \frac{f_{SYS}}{65536-[RCAP2H,RCAP2L]} F=22165536[RCAP2H,RCAP2L]fSYS

定时器2溢出不产生中断,所以定时器2可以作时钟输出。

功能框图:
在这里插入图片描述

(2)软件实现

下面示例中,系统时钟 Option 选择“内部 128kHz RC 振荡器作为振荡器 1,24MHz 内部 RC 作为振荡器 2”。

#include "SH79F9476.h"
#include "cpu.h"
#include "intrins.h"
#include "api_ext.h"void main()
{// 时钟设置高速模式CLKCON = 0x08;Delay();CLKCON |= 0x04;// P0.0,P0.1设置为输出P0CR = 0x03;P0 = 0x00;// 关闭定时器2中断IEN1 &= 0xFB; T2CON = 0;// P13作为T2输出T2MOD = 0x82;  // 系统时钟为24M,可产生100Hz的时钟      f=(1/4)*(Fsys/(65536-[RCAP2H,RCAP2L]))RCAP2L = 0xA0; RCAP2H = 0x15;TL2 = 0xA0;TH2 = 0x15;// 启动定时器T2CON |= 0x04; while (1);
}
// TIMER2的中断
void INT_TIMER2(void) interrupt 9
{_push_(INSCON);Select_Bank0();// 定时器溢出if (T2CON & 0x80){// 溢出标志位清0T2CON &= 0x7F;// 翻转P0_0P0_0 = ~P0_0;}// 检测到外部事件下降沿if (T2CON & 0x40){// 1011 1111, T2EX引脚外部事件被检测到的标志位清0T2CON &= 0xBF;// 翻转P0_1P0_1 = ~P0_1;}_pop_(INSCON);
}

程序运行后,T2 输出口(P1_3)输出 100Hz 频率时钟。
输出波形如下图所示:
在这里插入图片描述

三、其它定时器介绍

1. 定时器3

定时器3是16位自动重载定时器,通过两个数据寄存器TH3和TL3访问,由T3CON寄存器控制。IEN0寄存器的ET3位置1允许定时器3中断。

定时器3只有一种工作方式: 16位自动重载计数器/定时器。

在这里插入图片描述
代码示例:

  IEN0 |= 0xA0;     //打开定时器3中断_push_(INSCON);Select_Bank1();T3CON = 0x02;	  //外部32.768kHz/128kHz为时钟源,1分频//配置定时器的初值为0xfffe,溢出时间为2个128kHz时钟TL3 = 0xfe;		 TH3 = 0xff;T3CON |=0x04;  //启动定时器3_pop_(INSCON);void INT_TIMER3(void) interrupt 5
{ _push_(INSCON);Select_Bank0();P0_0 = ~P0_0;_pop_(INSCON);   
}

系统时钟 Option 选择“内部 128kHz RC 振荡器作为振荡器 1,24MHz内部 RC 作为振荡器 2”,全速运行后,T3 时钟为低频 128k 时钟,P0_0 引脚输出 32k 频率方波。

2. 定时器4

定时器4是16位自动重载定时器。通过两个数据寄存器TH4和TL4访问,由T4CON寄存器控制。IEN1寄存器的ET4位置1允许定时器4中断。

定时器4有2种工作方式: 16位自动重载定时器和有T4边沿触发的16位自动重载定时器。

官方代码示例:

void init_timer4()
{IEN0 |= 0x84;     //EA,ET4,中断使能_push_(INSCON);Select_Bank1();#ifdef TIMER4_OUTT4CON = 0x40;	  //T4引脚输出//配置定时器的初值为0x8000,T4引脚输出周期为2*0x8000个系统时钟的方波TL4 = 0x00;		 TH4 = 0x80;#endif#ifdef TIMER4_EDGETRIGT4CON = 0x48;	//T4上升沿触发,且可以多次触发TL4 = 0x00;TH4 = 0x00;#endifT4CON |=0x02;  //启动定时器4Select_Bank0();_pop_(INSCON);
}void INT_TIMER4(void) interrupt 2
{ _push_(INSCON);Select_Bank0();P0_0 = ~P0_0;_pop_(INSCON);       
}

启用 TIMER4_OUT

系统时钟 Option 选择“内部 128kHz RC振荡器作为振荡器1,24MHz内部RC作为振荡器2”,全速运行后,时钟为系统时钟,T4引脚(P1_1)输出周期为 2.7302ms 方波。

启用 TIMER4_EDGETRIG

系统时钟 Option 选择“内部 128kHzRC 振荡器作为振荡器 1,24MHz 内部 RC 作为振荡器 2”,全速运行后:
向 T4(P1_1)输入一个上升沿,P0.0状态翻转一次;向T4 (P1_1)输入周期性的上升沿,若周期小于T4定时时间(2.7302ms),
T4 将一直处于重新计时状态,P0.0 将无波形输出;若周期大于 T4 定时时间(2.7302ms),P0.0输出方波。

3. 定时器5

定时器5是16位自动重载定时器。通过两个数据寄存器TH5和TL5访问,由T5CON寄存器控制。IEN0寄存器的ET5位置1允许定时器5中断。

定时器5有一种工作方式:16位自动重载定时器。

官方代码示例:

void init_timer5()
{IEN0 |= 0x88;     //EA, ET5_push_(INSCON);Select_Bank1();//配置定时器的初值为0xD120,溢出时间为0x2EE0个系统时钟TL5 = 0x20;		 TH5 = 0xD1;T5CON |=0x02;  //启动定时器5_pop_(INSCON);
}void INT_TIMER5(void) interrupt 3
{ _push_(INSCON);Select_Bank0();P0_0 = ~P0_0;_pop_(INSCON);       
}

系统时钟 Option 选择“内部 128kHz RC 振荡器作为振荡器 1,24MHz
内部 RC 作为振荡器 2”,运行后时钟为系统时钟,P0_0 引脚输出 1kHz 频率方波。

本文学习资源来自中颖官网芯片文档
本文代码开源地址: https://gitee.com/xundh/learn-sinowealth-51

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/600504.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Netty学习——源码篇13 命中缓存的分配 备份

上一篇分析了DirectArena内存分配大小的大概流程(Netty池化内存管理机制),知道了其先命中缓冲,如果没有命中,再去分配一款连续内存。现在分析命中缓存的相关逻辑。前面说到PoolThreadCache中维护了三个缓存数组(实际上是6个,这里仅以Direct为…

【微服务-链路跟踪】Spring Cloud Sleuth核心技术(上)

在前面几篇文章中,我们主要介绍了基于 Sentinel 如何对微服务架构提供限流、熔断保护。从本篇开始,我们继续完善微服务架构,通过介绍链路跟踪原理和基于SpringCloud Sleuth实现链路跟踪。 一、微服务链路跟踪原理 我们先看一个图&#xff0…

基于RTThread的学习(三):正点原子潘多拉 QSPI 通信 W25Q128 实验

1、基于芯片创建工程 2、QSPI配置 2.1、RTThing_setting 设置组件 2.2、配置board.h 文件 2.3、cubemx生成QSPI的硬件初始化代码;HAL_QSPI_MapInit; 这里注意:你所买的开发板对应的qspi 连接的是否是cubemx 上边显示的,如果不是你需要将引脚…

计算机服务器中了rmallox勒索病毒怎么办?Rmallox勒索病毒解密流程步骤

网络为企业的生产运营提供便利的同时,也为企业的数据安全带来严重威胁。随着互联网技术的不断应用与发展,企业的生产运营离不开网络,利用网络可以开展各项工作业务,极大地方便了企业生产运营,大大提升了企业生产效率&a…

MySQL学习笔记------事务

事务 事务是一组操作的集合,他是一个不可分割的单位,事务会把所有的操作作为一个整体一起向系统提交或撤销操作请求,即这些操作要么同时成功,要么同时失败 事务操作 create table account(id int comment ID,name varchar(10) …

前端| 富文本显示不全的解决方法

背景 前置条件:编辑器wangEditor vue项目 在pc端进行了富文本操作, 将word内容复制到编辑器中, 进行发布, pc端正常, 在手机端展示的时候 显示不全 分析 根据h5端编辑器内容的数据展示, 看到有一些样式造…

基于RKNN的YOLOv5安卓Demo

1.简介 基于RKNPU2 SDK 1.6.0版的安卓YOLOv5演示应用程序,选择图片进行对象检测并显示识别结果。 GitHub源码地址:https://github.com/shiyinghan/rknn-android-yolov5 2.实现过程 参考RKNN官方库RKNN Model Zoo提供的YOLOv5对象检测demo&#xff0c…

【Web】CTFSHOW-2023CISCN国赛初赛刷题记录(全)

目录 Unzip BackendService go_session deserbug 主打一个精简 Unzip 进来先是一个文件上传界面 右键查看源码,actionupload.php 直接访问/upload.php,看到后端的源码 就是上传一个压缩包,对其进行解包处理 因为其是在/tmp下执行…

C++ | Leetcode C++题解之第16题最接近的三数之和

题目&#xff1a; 题解&#xff1a; class Solution { public:int threeSumClosest(vector<int>& nums, int target) {sort(nums.begin(), nums.end());int n nums.size();int best 1e7;// 根据差值的绝对值来更新答案auto update [&](int cur) {if (abs(cur…

Qt 中的项目文件解析和命名规范

&#x1f40c;博主主页&#xff1a;&#x1f40c;​倔强的大蜗牛&#x1f40c;​ &#x1f4da;专栏分类&#xff1a;QT❤️感谢大家点赞&#x1f44d;收藏⭐评论✍️ 目录 一、Qt项目文件解析 1、.pro 文件解析 2、widget.h 文件解析 3、main.cpp 文件解析 4、widget.cpp…

Redis: 持久化

文章目录 一、RDB持久化1、概念2、生成、载入RDB文件3、执行时机&#xff08;1&#xff09; 执行save命令&#xff08;2&#xff09;执行bgsave命令&#xff08;3&#xff09;Redis停机时&#xff08;4&#xff09;触发RDB条件 4、bgsave原理5、小结 二、AOF持久化1、概念2、AO…

element vue 日期时间组件封装

一、背景 年、月、周、日的时间范围类型&#xff0c;选择对应的日期类型&#xff0c;会传参给后端一个dateType参数&#xff0c;用于后端判断&#xff0c;进行数据抽稀。 二、实现效果 三、代码 完整代码&#xff1a; //年月周日&#xff0c;组件封装 //vue3 setup <scrip…