单例模式以及常见的两种实现模式

单例模式是校招中最常考的设计模式之一.

设计模式其实就是类似于“规章制度”,按照这个套路来进行操作。

单例模式能保证某个类在程序中只存在唯一 一份实例。而不会创建出多个实例,如果创建出了多个实例,就会编译报错。而不会创建出多个实例,如果创建出了多个实例,就会编译报错。不使用单例模式也可以做到,就像跟别人借钱说我一定会还一样,但是模式就相当于打了欠条,一定得做到的。这一点在很多场景上都需要. 比如 JDBC 中的 DataSource 实例就只需要一个。

单例模式具体的实现方式, 分成 "饿汉" 和 "懒汉" 两种.

饿汉模式

类加载的同时, 创建实例(给人一种很急的感觉)

// 饿汉模式的 单例模式 实现.
// 此处保证 Singleton 这个类只能创建出一个实例.
class Singleton {// 在此处, 先把这个实例给创建出来了.private static Singleton instance = new Singleton();// 如果需要使用这个唯一实例, 统一通过 Singleton.getInstance() 方式来获取.public static Singleton getInstance() {return instance;}// 为了避免 Singleton 类不小心被复制出多份来.// 把构造方法设为 private. 在类外面, 就无法通过 new 的方式来创建这个 Singleton 实例了!!private Singleton() {}
}public class ThreadDemo19 {public static void main(String[] args) {Singleton s = Singleton.getInstance();Singleton s2 = Singleton.getInstance();// Singleton s3 = new Singleton();System.out.println(s == s2);}
}

        运行一个 Java 程序,会先让 Java 进程找到并读取对应的 .class 文件,就会读取文件内容并解析,构造成类对象......这一系列的过程操作就叫做 类加载。 

        因为 static 修饰的变量落入到了类对象里面,又因为类对象是在类加载阶段内创建出来的唯一一个实例,同时构造方法是 private 修饰的,因此就只有这一个实例的成员了。

懒汉模式

类加载的时候不创建实例,第一次使用的时候才创建实例,如果不用就不创建了(效率更高了)

class SingletonLazy {private static SingletonLazy instance = null;public static SingletonLazy getInstance() {if (instance == null) {instance = new SingletonLazy();}return instance;}private SingletonLazy() {}
}public class ThreadDemo20 {public static void main(String[] args) {SingletonLazy s = SingletonLazy.getInstance();SingletonLazy s2 = SingletonLazy.getInstance();System.out.println(s == s2);}
}

         上述的这两种模式,饿汉模式只涉及到“读操作”,懒汉模式既涉及到“读操作”也涉及到“写操作”,因此这个在多线程环境下会有线程安全问题。

因此加上 synchronized 可以改善这里的线程安全问题。

public static SingletonLazy getInstance() {// 这一层 if 是因为只要对象被 new 了一次就不用再加锁产生更多开销了if (instance == null) {synchronized (SingletonLazy.class) {if (instance == null) {instance = new SingletonLazy();}}}return instance;}

         也就是说,如果对象还有没有创建那么就要进行加锁,如果对象已经创建过了就不用加锁了,因为最后都是“读操作”,此时不加锁也没事。

懒汉模式-多线程版(改进)

        假设有很多线程都去进行 getInstance,这个时候就会出现内存可见性问题(编译器优化:只有第一次真正读了内存,后续都是读寄存器 / cache)

        同时还会有指令重排序问题:

instance = new Singleton();可以拆分成三个步骤

1.申请内存空间

2.调用构造方法,把这个内存空间初始化成一个合理的对象

3.把内存空间的地址赋值给 instance 引用

        正常情况下是1 2 3 顺序来执行的,但是编译器会为了提高效率从而调整顺序,可能就变成1 3 2,如果是单线程就没有区别。但在多线程环境下,假设 t1 是按照 1 3 2 执行的,当 t1 执行到 1 3 之后,准备执行 2 的时候,t2 跑过来执行了。此时在 t2 的角度 instance 就非空了,就会直接返回instance 了,但由于 t1 的 2 指令还没执行完,t2 拿到的是一个非法的对象(还没构造完成的不完整的对象),这时候如果尝试使用引用中的属性就会出现错误。例如 instance 里有个成员 num,构造方法是要初始化成100的,但是由于上述问题就导致构造方法还没执行,此时访问 num 是 0。

        因此加上 volatile 可以解决内存可见性问题和禁止指令重排序。

class SingletonLazy {private volatile static SingletonLazy instance = null;public static SingletonLazy getInstance() {if (instance == null) {synchronized (SingletonLazy.class) {  //加锁不是这个线程就一直赖着不走,而是切换调度正常,但是其他线程尝试加锁的时候就会阻塞。if (instance == null) {instance = new SingletonLazy();}}}return instance;}private SingletonLazy() {}
}public class ThreadDemo20 {public static void main(String[] args) {SingletonLazy s = SingletonLazy.getInstance();SingletonLazy s2 = SingletonLazy.getInstance();System.out.println(s == s2);}
}

理解双重 if 判定 / volatile:

加锁 / 解锁是一件开销比较高的事情. 而懒汉模式的线程不安全只是发生在首次创建实例的时候.

因此后续使用的时候, 不必再进行加锁了.

外层的 if 就是判定下看当前是否已经把 instance 实例创建出来了.

同时为了避免 "内存可见性" 导致读取的 instance 出现偏差, 于是补充上 volatile .

当多线程首次调用 getInstance, 大家可能都发现 instance 为 null, 于是又继续往下执行来竞争锁,

其中竞争成功的线程, 再完成创建实例的操作.

当这个实例创建完了之后, 其他竞争到锁的线程就被里层 if 挡住了. 也就不会继续创建其他实例.

1) 有三个线程, 开始执行 getInstance , 通过外层的 if (instance == null) 知道了实例还没

有创建的消息. 于是开始竞争同一把锁.

2) 其中线程1 率先获取到锁, 此时线程1 通过里层的 if (instance == null) 进一步确认实例是

否已经创建. 如果没创建, 就把这个实例创建出来.

3) 当线程1 释放锁之后, 线程2 和 线程3 也拿到锁, 也通过里层的 if (instance == null) 来

确认实例是否已经创建, 发现实例已经创建出来了, 就不再创建了.

4) 后续的线程, 不必加锁, 直接就通过外层 if (instance == null) 就知道实例已经创建了, 从

而不再尝试获取锁了. 降低了开销.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/610980.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

21、矩阵-搜索二维矩阵

思路: 这道题很有意思 从左到有升序,从上到下升序,斜边从左上到右下也是升序,从右上到做下降序。 如果是从左往右依次遍历,就会面临一个问题向右还是向下,因为都是大于当前值,不好决断&#x…

什么是队列

队列是一种特殊类型的线性表,其只允许在一端进行插入操作,而在另一端进行删除操作。具体来说,允许插入的一端称为队尾,而允许删除的一端称为队头。这种数据结构遵循“先进先出”(FIFO)的原则,即…

数据安全之路:Databend 用户与角色管理应用

Databend 目前支持基于角色的访问控制 (RBAC) 和 自主访问控制 (DAC) 模型,用于访问控制功能。 通过本指南,我们会了解权限和角色在 Databend 中的基本概念,以及如何管理角色、继承角色与建立层级、设置默认角色以及所有权的重要性。这些功能…

ios包上架系列 二、Xcode打应用市场ipa包

打包的时候一定要断开网络&#xff0c;上线包名只能在打包机配置 检查是否是正式环境&#xff0c;先在模拟器上运行 1、版本名称和本号号记得在这里更改&#xff0c;否则不生效 原因 &#xff1a;info.list <string>$(FLUTTER_BUILD_NAME)</string><key>CFB…

Docker核心特征

Docker的基本概念 Dockerfile&#xff1a;制作进行的文件&#xff0c;可以理解为制作镜像的一个清单。 镜像&#xff1a;用来创建容器的安装包&#xff0c;可以理解为给电脑安装操作系统的系统镜像。 容器&#xff1a;通过镜像来创建的一套运行环境&#xff0c;一个容器里可…

solidworks electrical 2D和3D有什么区别

SolidWorks Electrical 是一款专为电气设计开发的软件工具&#xff0c;它提供了两种主要的工作环境&#xff1a;2D电气设计和3D电气集成设计。两者在功能和应用场景上存在显著的区别&#xff1a; SolidWorks Electrical 2D 设计 特点与用途&#xff1a; SolidWorks Electrica…

绿联 安装火狐浏览器(Firefox),支持访问路由器

绿联 安装火狐浏览器&#xff08;Firefox&#xff09;&#xff0c;支持访问路由器 1、镜像 linuxserver/firefox:latest 前置条件&#xff1a;动态公网IP。 已知问题&#xff1a; 直接输入中文时&#xff0c;不能完整输入&#xff0c;也可能输入法无法切换到中文&#xff0c;可…

远程桌面无法连接怎么办?

远程桌面无法连接是指在尝试使用远程桌面功能时出现连接失败的情况。这种问题可能会给工作和生活带来极大的不便&#xff0c;因此我们需要寻找解决办法。在讨论解决方案之前&#xff0c;我们先来了解一下【天联】组网的优势。 【天联】组网的优势有很多。它能够解决复杂网络环境…

C++的并发世界(九)——条件变量

0.绪论——单例模型 单例设计模式是一种常见的设计模式&#xff0c;用于确保某个类只能创建一个实例。由于单例实例是全局唯一的。因此在多线程环境中使用单例模式时,需要考虑线程安全的问题。 1.消费者设计模式 2.condition_variable使用步骤 ①准备好信号量 std::conditio…

vue3+高德地图+turfjs实现等压线,色斑图(用于显示气象,环境等地图场景)

首先是turf.js(英文官网),也有中文网不过也就目录翻译了一下. 高德官网自行获得key 使用turf的isobands api实现. 数据: 需要准备geojson格式经纬度信息业务值(比如温度,高度,光照只要是number值什么数据都可以) 国内各地区geojson数据点这里获得 参考的是这位大佬写的内容 我…

【ROS2笔记三】构建ROS2功能包

3.构建ROS2功能包 文章目录 3.构建ROS2功能包3.1ROS2中包的组成部分3.2创建ROS2功能包并编写节点3.2.1使用CMake创建功能包3.2.2编写cpp节点代码 3.3编译运行节点3.4使用面向对象的方式编写ROS2节点3.5使用RCLPY编写节点Reference 3.1ROS2中包的组成部分 ROS2可以使用CMake或者…

java数据结构与算法刷题-----LeetCode461. 汉明距离

java数据结构与算法刷题目录&#xff08;剑指Offer、LeetCode、ACM&#xff09;-----主目录-----持续更新(进不去说明我没写完)&#xff1a;https://blog.csdn.net/grd_java/article/details/123063846 文章目录 1. 异或统计1的个数2. 位移操作处理3. Brian Kernighan算法 位运…