【深度学习注意力机制系列】—— SENet注意力机制(附pytorch实现)

深度学习中的注意力机制(Attention Mechanism)是一种模仿人类视觉和认知系统的方法,它允许神经网络在处理输入数据时集中注意力于相关的部分。通过引入注意力机制,神经网络能够自动地学习并选择性地关注输入中的重要信息,提高模型的性能和泛化能力。

卷积神经网络引入的注意力机制主要有以下几种方法:

  • 在空间维度上增加注意力机制
  • 在通道维度上增加注意力机制
  • 在两者的混合维度上增加注意力机制

我们将在本系列对多种注意力机制进行讲解,并使用pytorch进行实现,今天我们讲解SENet注意力机制

SENet(Squeeze-and-Excitation Networks)注意力机制通道维度上引入注意力机制,其核心思想在于通过网络根据loss去学习特征权重,使得有效的feature map权重大,无效或效果小的feature map权重小的方式训练模型达到更好的结果。SE block嵌在原有的一些分类网络中不可避免地增加了一些参数和计算量,但是在效果面前还是可以接受的 。Sequeeze-and-Excitation(SE) block并不是一个完整的网络结构,而是一个子结构,可以嵌到其他分类或检测模型中。

在这里插入图片描述

以上是SENet的结构示意图, 其关键操作为squeeze和excitation. 通过自动学习获得特征图在每个通道上的重要程度,以此为不同通道赋予不同的权重,提升有用通道的贡献程度.

实现机制:

  1. Squeeze: 通过全剧平均池化层,将每个通道大的二维特征(h*w)压缩为一个实数,维度变化: (C, H, W) -> (C, 1, 1)
  2. Excitation: 给予每个通道的一个特征权重, 然后经过两次全连接层的信息整合提取,构建通道间的自相关性,输出权重数目和特征图通道数一致, 维度变化: (C, 1, 1) -> (C, 1, 1)
  3. Scale: 将归一化后的权重加权道每个通道的特征上, 论文中使用的是相乘加权, 维度变化: (C, H, W) * (C, 1, 1) -> (C, H, W)

pytorch实现:

class SENet(nn.Module):def __init__(self, in_channels, ratio=16):super(SENet, self).__init__()self.in_channels = in_channelsself.fgp = nn.AdaptiveAvgPool2d((1, 1))self.fc1 = nn.Linear(self.in_channels, int(self.in_channels / ratio), bias=False)self.act1 = nn.ReLU()self.fc2 = nn.Linear(int(self.in_channels / ratio), self.in_channels, bias=False)self.act2 = nn.Sigmoid()def forward(self, x):b, c, h, w = x.size()output = self.fgp(x)output = output.view(b, c)output = self.fc1(output)output = self.act1(output)output = self.fc2(output)output = self.act2(output)output = output.view(b, c, 1, 1)return torch.multiply(x, output)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/61130.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JAVA基础之放弃使用Random

随机是日常生活中经常遇到的非常有趣的东西,比如说抛硬币,他的不可预知性总是让我们特别着迷,在拿不定主意时,有些人就喜欢用抛硬币的方式来帮助我们做决定。体育领域也喜欢用喜欢用抛硬币的方式来猜先。随机数功能是Java非常非常…

跳跃游戏 II——力扣45

文章目录 题目描述解法一 贪心题目描述 解法一 贪心 int jump(vector<int>& nums){in

Python-OpenCV中的图像处理-图像平滑

Python-OpenCV中的图像处理-图像平滑 图像平滑平均滤波高斯模糊中值模糊双边滤波 图像平滑 使用低通滤波器可以达到图像模糊的目的。这对与去除噪音很有帮助。其实就是去除图像中的高频成分&#xff08;比如&#xff1a;噪音&#xff0c;边界&#xff09;。所以边界也会被模糊…

Annotorious.js 入门教程:图片注释工具

theme: smartblue 本文简介 【今天我必须发一个封面&#xff01;放文末&#xff01;】 最近有工友问我前端怎么给图片做标注。使用 Fabric.js 或者 Konva.js 等库确实可以实现&#xff0c;但多少觉得有点大炮打蚊的感觉&#xff0c;好奇有没有专门做图片标注的工具呢&#xff1…

AI量化模型预测挑战赛 第二次学习笔记

有关竞赛信息以及基础baseline代码解读请看我的上一篇文章 AI量化模型预测——baseline学习笔记_寂ღ᭄秋࿐的博客-CSDN博客 在经过baseline进行详细的分析之后&#xff0c;接下来的方向肯定是奔着提分去的&#xff0c;下面我就从五个方面进行一一列出提分思路 提取更多的特征…

Java多线程(九)

目录 一、synchronized基本特点 二、synchronized加锁工作过程 2.1 无锁 2.2 偏向锁 2.3 轻量级锁 2.4 重量级锁 三、synchronized其他优化操作 3.1 锁消除 3.2 锁粗化 一、synchronized基本特点 开始是乐观锁&#xff0c;如果锁冲突频繁就会转换成悲观锁开始是轻量级锁&#x…

Kubernetes(K8s)从入门到精通系列之十:使用 kubeadm 创建一个高可用 etcd 集群

Kubernetes K8s从入门到精通系列之十&#xff1a;使用 kubeadm 创建一个高可用 etcd 集群 一、etcd高可用拓扑选项1.堆叠&#xff08;Stacked&#xff09;etcd 拓扑2.外部 etcd 拓扑 二、准备工作三、建立集群1.将 kubelet 配置为 etcd 的服务管理器。2.为 kubeadm 创建配置文件…

MySQL事务:ACID特性实现原理

事务是MySQL等关系型数据库区别于NoSQL的重要方面&#xff0c;是保证数据一致性的重要手段。本文将首先介绍MySQL事务相关的基础概念&#xff0c;然后介绍事务的ACID特性&#xff0c;并分析其实现原理。 MySQL博大精深&#xff0c;文章疏漏之处在所难免&#xff0c;欢迎批评指…

qt creater运行按钮灰色,问题记录

第一次安装还没运行就出了三个错误&#xff1a; 1.F:\wei\Qt\Tools\CMake_64\share\cmake-3.24\Modules\CMakeTestCXXCompiler.cmake:62: error: The C compiler "C:/Program Files (x86)/Microsoft Visual Studio 14.0/VC/BIN/amd64/cl.exe" is not able to compil…

JVM 调优实例

点击下方关注我&#xff0c;然后右上角点击...“设为星标”&#xff0c;就能第一时间收到更新推送啦~~~ JVM提供了多种垃圾回收器&#xff0c;可以根据应用程序的需求选择最适合的垃圾回收器。例如&#xff0c;如果应用程序需要更快的响应时间&#xff0c;可以选择并行垃圾回收…

Unity 打造游戏攻击技能架构与设计

一、技能系统的设计 在 MOBA 游戏中&#xff0c;每个英雄角色都会有多个技能&#xff0c;这些技能可以分为普通攻击和技能攻击两种。普通攻击是英雄角色的基本攻击方式&#xff0c;而技能攻击则需要消耗一定的资源&#xff08;如蓝量&#xff09;才能使用。在设计技能系统时&a…

HoG特征笔记

简介 HoG&#xff08;Histogram of Oriented Gradient&#xff09;&#xff0c;方向梯度直方图。HoG特征是一种特征描述符。它通过计算和统计图像局部区域的梯度方向直方图来描述特征。 HoG基于的底层原理是图像中局部目标的表象和形状&#xff08;appearance and shape&#x…