【OpenVINO™】使用 OpenVINO™ C# API 部署 YOLOv9 目标检测和实例分割模型(上篇)

YOLOv9模型是YOLO系列实时目标检测算法中的最新版本,代表着该系列在准确性、速度和效率方面的又一次重大飞跃。它通过引入先进的深度学习技术和创新的架构设计,如通用ELAN(GELAN)和可编程梯度信息(PGI),显著提升了物体检测的性能。在本文中,我们将结合OpenVINO™ C# API 使用最新发布的OpenVINO™ 2024.0部署YOLOv9 目标检测和实例分割模型。

OpenVINO™ C# API项目链接:

https://github.com/guojin-yan/OpenVINO-CSharp-API.git

使用 OpenVINO™ C# API 部署 YOLOv9 全部源码:

https://github.com/guojin-yan/OpenVINO-CSharp-API-Samples/tree/master/model_samples/yolov9

1. 前言

1.1 OpenVINO™ C# API

英特尔发行版 OpenVINO™ 工具套件基于 oneAPI 而开发,可以加快高性能计算机视觉和深度学习视觉应用开发速度工具套件,适用于从边缘到云的各种英特尔平台上,帮助用户更快地将更准确的真实世界结果部署到生产系统中。通过简化的开发工作流程,OpenVINO™ 可赋能开发者在现实世界中部署高性能应用程序和算法。

2024年3月7日,英特尔发布了开源 OpenVINO™ 2024.0 工具包,用于在各种硬件上优化和部署人工智能推理。OpenVINO™ 是英特尔出色的开源 AI 工具包,不仅可以在 x86_64 CPU 上加速 AI 推断,还可以在 ARM CPU 和其他架构、英特尔集成显卡和独立显卡等硬件上加速 AI 推断,包括最近推出的 NPU 插件,用于利用新酷睿超 “Meteor Lake “系统芯片中的英特尔神经处理单元。 OpenVINO™ 2024.0 更注重生成式人工智能(GenAI),为 TensorFlow 句子编码模型提供了更好的开箱即用体验,支持专家混合(MoE)。同时还提高了 LLM 的 INT4 权重压缩质量,增强了 LLM 在英特尔 CPU 上的性能,简化了 Hugging Face 模型的优化和转换,并改进了其他 Hugging Face 集成。

OpenVINO™ C# API 是一个 OpenVINO™ 的 .Net wrapper,应用最新的 OpenVINO™ 库开发,通过 OpenVINO™ C API 实现 .Net 对 OpenVINO™ Runtime 调用,使用习惯与 OpenVINO™ C++ API 一致。OpenVINO™ C# API 由于是基于 OpenVINO™ 开发,所支持的平台与 OpenVINO™ 完全一致,具体信息可以参考 OpenVINO™。通过使用 OpenVINO™ C# API,可以在 .NET、.NET Framework等框架下使用 C# 语言实现深度学习模型在指定平台推理加速。

下表为当前发布的 OpenVINO™ C# API NuGet Package,支持多个目标平台,可以通过NuGet一键安装所有依赖。

Core Managed Libraries
PackageDescriptionLink
OpenVINO.CSharp.APIOpenVINO C# API core libraries
OpenVINO.CSharp.API.ExtensionsOpenVINO C# API core extensions libraries
OpenVINO.CSharp.API.Extensions.OpenCvSharpOpenVINO C# API core extensions libraries use OpenCvSharp
OpenVINO.CSharp.API.Extensions.EmguCVOpenVINO C# API core extensions libraries use EmguCV
Native Runtime Libraries
PackageDescriptionLink
OpenVINO.runtime.winNative bindings for Windows
OpenVINO.runtime.ubuntu.22-x86_64Native bindings for ubuntu.22-x86_64
OpenVINO.runtime.ubuntu.20-x86_64Native bindings for ubuntu.20-x86_64
OpenVINO.runtime.ubuntu.18-x86_64Native bindings for ubuntu.18-x86_64
OpenVINO.runtime.debian9-arm64Native bindings for debian9-arm64
OpenVINO.runtime.debian9-armhfNative bindings for debian9-armhf
OpenVINO.runtime.centos7-x86_64Native bindings for centos7-x86_64
OpenVINO.runtime.rhel8-x86_64Native bindings for rhel8-x86_64
OpenVINO.runtime.macos-x86_64Native bindings for macos-x86_64
OpenVINO.runtime.macos-arm64Native bindings for macos-arm64

1.2 YOLOv9

YOLOv9模型是YOLO系列实时目标检测算法中的最新版本,代表着该系列在准确性、速度和效率方面的又一次重大飞跃。它通过引入先进的深度学习技术和创新的架构设计,如通用ELAN(GELAN)和可编程梯度信息(PGI),显著提升了物体检测的性能。

具体来说,YOLOv9解决了深度神经网络中信息丢失的问题,通过整合PGI和GELAN架构,不仅增强了模型的学习能力,还确保了在整个检测过程中保留关键信息。此外,它采用更深的网络结构以提取更丰富的特征,同时引入残差连接和跨层连接等机制以优化训练过程。为了提高模型的泛化能力并降低过拟合风险,YOLOv9还使用了正则化技术,如权重衰减和Dropout。

由于YOLOv9在模型架构、训练策略以及数据处理等方面的改进,它在COCO数据集上能够获得更高的AP值,显示出其在复杂和多样化场景下的卓越性能。此外,YOLOv9还注重实时性能,通过优化网络结构和计算效率,实现了在保持高性能的同时减少计算量和提高处理速度。这使得YOLOv9在实时目标检测任务中具有显著优势,能够满足各种应用场景的需求。

2. 模型获取

2.1 源码下载

YOLOv9 模型可以通过源码进行下载,首先克隆GitHub上的源码,输入以下指令:

git clone https://github.com/WongKinYiu/yolov9.git
cd yolov9
### 2.2 配置环境

接下来安装模型下载以及转换环境,此处使用Anaconda进行程序集管理,输入以下指令创建一个yolov9环境:

conda create -n yolov9 python=3.10
conda activate yolov9

然后安装yolov9模型下载以及转换所必需的环境,输入以下指令:

pip install -r requirements.txt
pip install openvino==2024.0.0

2.3 下载模型

首先导出目标识别模型,此处以官方预训练模型为例,首先下载预训练模型文件,然后调用export.py文件导出ONBNX格式的模型文件,最后使用 OpenVINO™ 的模型转换命令将模型转为IR格式,依次输入以下指令即可:

wget https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-c.p
python export.py --weights ./yolov9-c.pt --imgsz 640 --include onnx
ovc yolov9-c.onnx

同样的方式可以导出实例分割模型:

wget https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-c-seg.ptt
python export.py --weights ./gelan-c-seg.pt --imgsz 640 --include onnx
ovc gelan-c-seg.onnx

模型的结构如下图所示:

3. Yolov9 项目配置

3.1 项目创建与环境配置

在Windows平台开发者可以使用Visual Studio平台开发程序,但无法跨平台实现,为了实现跨平台,此处采用dotnet指令进行项目的创建和配置。

首先使用dotnet创建一个测试项目,在终端中输入一下指令:

dotnet new console --framework net6.0 --use-program-main -o yolov9

此处以Windows平台为例安装项目依赖,首先是安装OpenVINO™ C# API项目依赖,在命令行中输入以下指令即可:

dotnet add package OpenVINO.CSharp.API
dotnet add package OpenVINO.runtime.win
dotnet add package OpenVINO.CSharp.API.Extensions
dotnet add package OpenVINO.CSharp.API.Extensions.OpenCvSharp

关于在不同平台上搭建 OpenVINO™ C# API 开发环境请参考以下文章: 《在Windows上搭建OpenVINO™C#开发环境》 、《在Linux上搭建OpenVINO™C#开发环境》、《在MacOS上搭建OpenVINO™C#开发环境》

接下来安装使用到的图像处理库 OpenCvSharp,在命令行中输入以下指令即可:

dotnet add package OpenCvSharp4
dotnet add package OpenCvSharp4.Extensions
dotnet add package OpenCvSharp4.runtime.win

关于在其他平台上搭建 OpenCvSharp 开发环境请参考以下文章:《【OpenCV】在Linux上使用OpenCvSharp》 、《【OpenCV】在MacOS上使用OpenCvSharp》

添加完成项目依赖后,项目的配置文件如下所示:

<Project Sdk="Microsoft.NET.Sdk"><PropertyGroup><OutputType>Exe</OutputType><TargetFramework>net6.0</TargetFramework><ImplicitUsings>enable</ImplicitUsings><Nullable>enable</Nullable></PropertyGroup><ItemGroup><PackageReference Include="OpenCvSharp4" Version="4.9.0.20240103" /><PackageReference Include="OpenCvSharp4.Extensions" Version="4.9.0.20240103" /><PackageReference Include="OpenCvSharp4.runtime.win" Version="4.9.0.20240103" /><PackageReference Include="OpenVINO.CSharp.API" Version="2024.0.0.1" /><PackageReference Include="OpenVINO.CSharp.API.Extensions.OpenCvSharp" Version="1.0.4" /><PackageReference Include="OpenVINO.runtime.win" Version="2024.0.0.1" /></ItemGroup></Project>

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/611314.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Qt创建基于应用程序的插件

应用程序插件 什么是插件插件的好处插件的种类应用程序插件创建应用程序的插件步骤:创建测试插件的应用程序步骤:应用程序插件示例开发环境创建示例生成插件运行结果总结什么是插件 插件是一种用于应用程序功能扩展和增强,且按照特定规范编写的应用程序接口的程序。 插件的…

Socks5代理IP使用教程及常见使用问题

当我们在互联网上浏览网页、下载文件或者进行在线活动时&#xff0c;隐私和安全问题常常被提及。在这样的环境下&#xff0c;一个有效的解决方案是使用Sock5IP。本教程将向您介绍Sock5IP的使用方法&#xff0c;帮助您保护个人隐私并提升网络安全。 一、什么是Sock5IP&#xff1…

开源模型应用落地-chatglm3-6b-function call-入门篇(六)

一、前言 每个模型都有自己的限制&#xff0c;有些情况下它们无法满足复杂的业务需求。但是&#xff0c;可以通过一个外置函数的方式&#xff0c;例如&#xff1a;"Function Call"&#xff0c;让开发者能够更加灵活地利用大型语言模型&#xff0c;帮助开发者在特定场…

7.接口自动化测试-Allure报告

1.环境搭建 &#xff08;1&#xff09;下载并解压allure.zip&#xff0c;不要用中文路径&#xff0c;将bin目录配置到path环境变量 官网&#xff1a;Allure下载 &#xff08;2&#xff09;cmd安装allure-pytest第三方库 pip install allure-pytest 检测是否安装成功 pip show …

从大量数据到大数据,King’s SDMS仪器数据采集及科学数据管理系统的应用

对于实验室或检测机构&#xff0c;仪器设备是所有业务开展的基础&#xff0c;数据则是核心命脉&#xff0c;而传统的仪器设备原始数据收集方式&#xff0c;效率低耗时长、操作流程不规范、不易保存与查找、错误率高、易篡改等成了制约检测机构持续高速发展的瓶颈和弊端&#xf…

Erlang中常用数据结构原理及其实现

文章目录 一、Erlang 简介二、数据结构2.1、元组&#xff08;Tuple&#xff09;2.1.1、示例&#xff1a;2.1.2、实现&#xff1a; 2.2、列表&#xff08;List&#xff09;2.2.1、示例2.2.2、实现2.2.3、原理 3. 字典&#xff08;Dictionary&#xff09;3.1、创建字典3.2、添加和…

ELK 日志分析系统(一)

一、概念 二、详解 2.1 Elasticsearch 核心概念 2.1.1 接近实时(NRT) 2.1.2 cluster集群 2.1.3 Node节点 2.1.4 index索引 2.1.5 类型&#xff08;type&#xff09; 2.1.6 文档&#xff08;document) 2.1.7 分片和副本(shards & replicas) 2.2 Logstash主要组件 …

UE_导入内容_Maya静态网格体导出为FBX的常规设置

注意事项&#xff1a;单位设置统一为cm&#xff1b;轴朝向&#xff0c;Maya默认y轴朝上&#xff0c;UE4 z轴向上&#xff1b;变换枢轴&#xff0c;UE4会将导入模型前世界中心作为枢轴中心&#xff0c;要旋转就需要注意了&#xff1b;法线&#xff0c;UE4内材质默认单面显示&…

记录一个Kafka客户端Offset Explore连不上的问题

我昨天把集群重装了一下&#xff0c;再连这个工具就连不上了&#xff08;你先把zk和kafka在集群启起来&#xff09;&#xff0c;报错截图如下&#xff1a; 英文翻译过来大概就是说遍历zk指定路径不存在&#xff0c;我还以为zk的问题&#xff0c;回去又把zk的文档翻了一遍&#…

HCIE考试第四题:业务个性化配置

文章目录 业务个性化配置题目与做题步骤如下4业务个性化配置4.1.创建节点池solo-2【4.13中的同步创建了】4.1.1.创建Namespace4.1.2.创建节点池和节点4.2.镜像制作solo:2.04.3.创建sol0-2.0日录4.4.NFS环境检查4.5.修改Dockerfie4.6.构建镜像solo:2.0并上传到SWR【4.2-4.6为1小…

锐化空间滤波器--二阶微分图像增强(提高清晰度的另一种方式)

书上一阶微分的定义可以理解&#xff0c;毕竟这里不死数学上的曲线的概念&#xff0c;而是像素点上的曲线。所以&#xff0c;不同于数学的严格单调递增曲线的导数是大于等于零&#xff0c;这里的严格单调递增曲线&#xff0c;只能是大于零。 至于二阶微分的定义&#xff0c;就…

项目4-图书管理系统2+统一功能处理

1. 拦截器&#xff08;Interceptor&#xff09; 我们完成了强制登录的功能, 后端程序根据Session来判断用户是否登录, 但是实现⽅法是比较麻烦的。 所需要处理的内容&#xff1a; • 需要修改每个接⼝的处理逻辑 • 需要修改每个接⼝的返回结果 • 接⼝定义修改, 前端代码也需…