[大模型]Qwen1.5-7B-Chat-GPTQ-Int4 部署环境

Qwen1.5-7B-Chat-GPTQ-Int4 部署环境

说明

Qwen1.5-72b 版本有BF16、INT8、INT4三个版本,三个版本性能接近。由于BF16版本需要144GB的显存,让普通用户忘却止步,而INT4版本只需要48GB即可推理,给普通用户本地化部署创造了机会。(建议使用4×24G显存的机器)

但由于Qwen1.5-72B-Chat-GPTQ-Int4其使用了GPTQ量化技术,对环境依赖要求严格,需要较为复杂的环境准备步骤。

在此提供环境准备教程。本教程以 Qwen1.5-7B-Chat-GPTQ-Int4为例,同样适用于其他大小的GPTQ-Int4版本。

环境准备

平台及cuda部分

在autodl平台中租一个4090等24G显存的显卡机器,如下图所示镜像选择PyTorch–>2.0.0–>3.8(ubuntu20.04)–>11.8(严格按照cuda11.8版本)
接下来打开刚刚租用服务器的JupyterLab,并且打开其中的终端开始环境配置。

在这里插入图片描述

说明:

  • 确保显卡驱动支持cuda11.8
  • 过程需要严格满足nvcc-pytorch-GPTQ的版本对应关系,否则GPTQ无法编译成功。

(原因见Qwen库Quantization部分,由于GPTQ工具需要严格的cuda+torch对应关系,且由于近期的升级可能带来的bug。我们保险起见选择cuda11.8,并且根据qwen库所要求的torch2.1,安装了其对应的torch,并在后面使用GPTQ源码构建以确保cuda的正确运行。)

确保nvcc可以正常工作:

nvcc -V
# 查看输出若为Cuda compilation tools, release 11.8 则跳过平台及cuda部分

如果后续由于Autodl的环境更新,无法选择cuda11.8,则可通过以下方式自行搭建cuda11.8环境。该方法已经通过测试。

# 下载驱动并安装
wget https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run# 勾选cudatoolkit并安装
sudo sh cuda_11.8.0_520.61.05_linux.run# 添加nvcc环境变量
vim ~/.bashrc # 添加如下两行
export PATH=/usr/local/cuda-11.8/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-11.8/lib64:$LD_LIBRARY_PATH# 重新载入
source ~/.bashrc 
nvcc -V 

虚拟环境配置

由于base环境的torch不一定满足要求,创建虚拟环境。

# 创建虚拟环境
conda create -n qwen python==3.10# 安装指定版本pytorch
pip install torch==2.1.1 torchvision==0.16.1 torchaudio==2.1.1 --index-url https://download.pytorch.org/whl/cu118# 安装Qwen1.5所需依赖
pip install accelerate tiktoken einops transformers_stream_generator==0.0.4 scipy optimum peft transformers streamlit modelscope

从源码安装GPTQ(auto-gptq>=0.5.1),否则极易出现GPTQ无法使用cuda的情况

# 从源码安装量化所需GPTQ库
pip install "git+https://github.com/PanQiWei/AutoGPTQ.git@v0.7.1"

见Qwen库Quantization部分说明:

Note: The pre-compiled auto-gptq packages strongly depend on the version of torch and its CUDA version. Moreover, due to recent update,
you may also encounter unsupported version errors from transformers, optimum, or peft.
We recommend using the latest versions meeting the following requirements:

  • torch==2.1 auto-gptq>=0.5.1 transformers>=4.35.0 optimum>=1.14.0 peft>=0.6.1
  • torch>=2.0,<2.1 auto-gptq<0.5.0 transformers<4.35.0 optimum<1.14.0 peft>=0.5.0,<0.6.0

至此,环境部分准备完成。

模型下载

使用 modelscope 中的snapshot_download函数下载模型,第一个参数为模型名称,参数cache_dir为模型的下载路径。

在 /root/autodl-tmp 路径下新建 download.py 文件并在其中输入以下内容,粘贴代码后记得保存文件,如下图所示。并运行 python /root/autodl-tmp/download.py 执行下载,下载模型大概需要 2 分钟。

import torch
from modelscope import snapshot_download, AutoModel, AutoTokenizer
from modelscope import GenerationConfig
model_dir = snapshot_download('qwen/Qwen1.5-7B-Chat-GPTQ-Int4', cache_dir='/root/autodl-tmp', revision='master')

说明:下载后需要确认下载的Qwen1.5-7B-Chat-GPTQ-Int4文件名称,可能由于解码问题不正确导致后续bug。

代码准备

/root/autodl-tmp路径下新建 chatBot.py 文件并在其中输入以下内容,粘贴代码后记得保存文件。下面的代码有很详细的注释,大家如有不理解的地方,欢迎提出issue。

# 导入所需的库
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
import torch
import streamlit as st# 在侧边栏中创建一个标题和一个链接
with st.sidebar:st.markdown("## Qwen1.5 LLM")"[开源大模型食用指南 self-llm](https://github.com/datawhalechina/self-llm.git)"# 创建一个滑块,用于选择最大长度,范围在0到1024之间,默认值为512max_length = st.slider("max_length", 0, 1024, 512, step=1)# 创建一个标题和一个副标题
st.title("💬 Qwen1.5 Chatbot")
st.caption("🚀 A streamlit chatbot powered by Self-LLM")# 定义模型路径
mode_name_or_path = '/root/autodl-tmp/qwen/Qwen1.5-7B-Chat-GPTQ-Int4'# 定义一个函数,用于获取模型和tokenizer
@st.cache_resource
def get_model():# 从预训练的模型中获取tokenizertokenizer = AutoTokenizer.from_pretrained(mode_name_or_path, use_fast=False)# 从预训练的模型中获取模型,并设置模型参数,特别注意torch_dtype为auto,否则送入device数据类型不一致model = AutoModelForCausalLM.from_pretrained(mode_name_or_path, torch_dtype="auto",  device_map="auto")return tokenizer, model# 加载Qwen1.5-4B-Chat的model和tokenizer
tokenizer, model = get_model()# 如果session_state中没有"messages",则创建一个包含默认消息的列表
if "messages" not in st.session_state:st.session_state["messages"] = [{"role": "assistant", "content": "有什么可以帮您的?"}]# 遍历session_state中的所有消息,并显示在聊天界面上
for msg in st.session_state.messages:st.chat_message(msg["role"]).write(msg["content"])# 如果用户在聊天输入框中输入了内容,则执行以下操作
if prompt := st.chat_input():# 将用户的输入添加到session_state中的messages列表中st.session_state.messages.append({"role": "user", "content": prompt})# 在聊天界面上显示用户的输入st.chat_message("user").write(prompt)# 构建输入     input_ids = tokenizer.apply_chat_template(st.session_state.messages,tokenize=False,add_generation_prompt=True)model_inputs = tokenizer([input_ids], return_tensors="pt").to('cuda')generated_ids = model.generate(model_inputs.input_ids, max_new_tokens=512)generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)]response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]# 将模型的输出添加到session_state中的messages列表中st.session_state.messages.append({"role": "assistant", "content": response})# 在聊天界面上显示模型的输出st.chat_message("assistant").write(response)# print(st.session_state)

运行 demo

在终端中运行以下命令,启动streamlit服务,并按照 autodl 的指示将端口映射到本地,然后在浏览器中打开链接 http://localhost:6006/ ,即可看到聊天界面。

streamlit run /root/autodl-tmp/chatBot.py --server.address 127.0.0.1 --server.port 6006

最终效果:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/611362.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux进阶篇:linux操作系统一个神奇的分区:swap交换分区

linux操作系统一个神奇的分区&#xff1a;swap交换分区 1 Swap交换分区概念 Linux内核为了提高读写效率与速度&#xff0c;会将文件在内存中进行缓存&#xff0c;这部分内存就是Cache Memory(缓存内存)。即使你的程序运行结束后&#xff0c;Cache Memory也不会自动释放。这就…

qemu源码解析一

基于qemu9.0.0 简介 QEMU是一个开源的虚拟化软件&#xff0c;它能够模拟各种硬件设备&#xff0c;支持多种虚拟化技术&#xff0c;如TCG、Xen、KVM等 TCG 是 QEMU 中的一个组件&#xff0c;它可以将高级语言编写的代码&#xff08;例如 C 代码&#xff09;转换为可在虚拟机中…

第十二届蓝桥杯真题做题笔记

2、卡片 笔记&#xff1a; 直接巧用排列组合求解即可&#xff1a; 我们通过对样例说明进行分析可知&#xff1a;想要分给n个小孩&#xff0c;那么我们就需要满足C(K, 2) K > n才能满足。 #include<bits/stdc.h> using namespace std;int com(int up, int down){i…

Kafka—ISR机制

ISR机制 Kafka 中的 ISR&#xff08;In-Sync Replicas&#xff09;机制是一种用于确保数据可靠性和一致性的重要机制。ISR 是一组副本&#xff0c;它包括分区的领导者&#xff08;Leader&#xff09;和追随者&#xff08;Follower&#xff09;副本&#xff0c;这些副本与领导者…

element问题总结之el-table使用fixed固定列后滚动条滑动到底部或者最右侧的时候错位问题

el-table使用fixed固定列后滚动条滑动到底部或者最右侧的时候错位 效果图前言解决方案纵向滑动滚动条滑动到底部的错位解决横向滚动条滑动到最右侧的错位解决 效果图 前言 在使用el-table固定行的时候移动滚动条会发现移动到底部或者移动到最右侧的时候会出现表头和内容错位或…

2024-4-11-arm作业

汇编实现三个灯的闪烁 源代码&#xff1a; .text .global _start _start: 时钟使能LDR r0,0x50000A28ldr r1,[r0]orr r1,r1,#(0x3<<4)str r1,[r0]设置PE10输出LDR r0,0x50006000ldr r1,[r0]bic r1,r1,#(0x3<<20)orr r1,r1,#(0x1<<20)str r1,[r0]设置PE1…

Android源码解析之截屏事件流程

今天这篇文章我们主要讲一下Android系统中的截屏事件处理流程。用过android系统手机的同学应该都知道&#xff0c;一般的android手机按下音量减少键和电源按键就会触发截屏事件&#xff08;国内定制机做个修改的这里就不做考虑了&#xff09;。那么这里的截屏事件是如何触发的呢…

test4122

欢迎关注博主 Mindtechnist 或加入【Linux C/C/Python社区】一起学习和分享Linux、C、C、Python、Matlab&#xff0c;机器人运动控制、多机器人协作&#xff0c;智能优化算法&#xff0c;滤波估计、多传感器信息融合&#xff0c;机器学习&#xff0c;人工智能等相关领域的知识和…

Shenandoah GC算法

概述 最早由Red Hat公司发起&#xff0c;目标是利用现代多核CPU的优势&#xff0c;减少大堆内存在GC时产生的停顿时间。随OpenJDK 12一起发布&#xff0c;暂停时间不依赖于堆的大小&#xff1b;这意味着无论堆的大小如何&#xff0c;暂停时间都是差不多的。 Shenandoah最初的…

Multisim仿真二极管、晶体管和场效应管学习笔记

Multisim仿真二极管、晶体管和场效应管 &#xff08;note&#xff1a;使用Multisim14.0版本进行仿真&#xff09; 文章目录 Multisim仿真二极管、晶体管和场效应管二极管的I-V特性晶体管的I-V特性场效应管的I-V特性 二极管的I-V特性 插入I-V analyzer 原理图绘制 改变仿真…

【Python】Python城乡人口数据分析可视化(代码+数据集)【独一无二】

&#x1f449;博__主&#x1f448;&#xff1a;米码收割机 &#x1f449;技__能&#x1f448;&#xff1a;C/Python语言 &#x1f449;公众号&#x1f448;&#xff1a;测试开发自动化【获取源码商业合作】 &#x1f449;荣__誉&#x1f448;&#xff1a;阿里云博客专家博主、5…

c# .net 香橙派 Orangepi GPIO高低电平、上升沿触发\下降沿触发 监听回调方法

c# .net 香橙派GPIO高低电平、上升沿触发\下降沿触发 监听回调方法 通过gpio readall 查看 gpio编码 这里用orangepi zero3 ,gpio= 70为例 当gpio 70 输入高电平时,触发回调 c# .net 代码 方法1: Nuget 包 System.Device.Gpio ,微软官方库对香橙派支持越来越好了,用得…