[大模型]Yi-6B-Chat 接入 LangChain 搭建知识库助手

Yi-6B-Chat 接入 LangChain 搭建知识库助手

环境准备

在 autodl 平台中租赁一个 3090 等 24G 显存的显卡机器,如下图所示镜像选择 PyTorch–>2.0.0–>3.8(ubuntu20.04)–>11.8

在这里插入图片描述

接下来打开刚刚租用服务器的 JupyterLab,并且打开其中的终端开始环境配置、模型下载和运行 demo。

pip 换源加速下载并安装依赖包

# 升级pip
python -m pip install --upgrade pip
# 更换 pypi 源加速库的安装
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simplepip install modelscope==1.9.5
pip install "transformers>=4.32.0" accelerate tiktoken einops scipy transformers_stream_generator==0.0.4 peft deepspeed
pip install -U huggingface_hub

模型下载

在已完成 Yi-6B-chat 部署的基础上,我们还需要还需要安装以下依赖包。
请在终端复制粘贴以下命令,并回车运行:

pip install langchain==0.0.292
pip install gradio==4.4.0
pip install chromadb==0.4.15
pip install sentence-transformers==2.2.2
pip install unstructured==0.10.30
pip install markdown==3.3.7

同时,我们还需要使用到开源词向量模型 Sentence Transformer 。

这里使用 huggingface 镜像下载到本地 /root/autodl-tmp/embedding_model,你也可以选择其它的方式下载。

在 /root/autodl-tmp 路径下新建 download.py 文件并在其中输入以下内容,粘贴代码后请及时保存文件,如下图所示。并运行 python /root/autodl-tmp/download.py 执行下载。

import os
# 设置环境变量
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'
# 下载模型
os.system('huggingface-cli download --resume-download sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 --local-dir /root/autodl-tmp/embedding_model')

使用 modelscope 中的 snapshot_download 函数下载模型,第一个参数为模型名称,参数 cache_dir 为模型的下载路径。

在 /root/autodl-tmp 路径下新建 model_download.py 文件并在其中输入以下内容,粘贴代码后记得保存文件,如下图所示。并运行 python /root/autodl-tmp/model_download.py 执行下载,模型大小为 11 GB,下载模型大概需要 8~15 分钟。


import torch
from modelscope import snapshot_download, AutoModel, AutoTokenizer
import os
model_dir = snapshot_download('01ai/Yi-6B-Chat', cache_dir='/root/autodl-tmp', revision='master')

知识库建设

我们选用以下开源仓库作为知识库来源:

  • sweettalk-django4.2

首先我们需要将上述远程开源仓库 Clone 到本地,可以使用以下命令:

# 进入到数据库盘
cd /root/autodl-tmp
# 打开学术资源加速
source /etc/network_turbo
# clone 开源仓库
git clone https://github.com/Joe-2002/sweettalk-django4.2.git
# 关闭学术资源加速
unset http_proxy && unset https_proxy

接着,为语料处理方便,我们将选用上述仓库中所有的 markdown、txt 文件作为示例语料库。注意,也可以选用其中的代码文件加入到知识库中,但需要针对代码文件格式进行额外处理。

我们首先将上述仓库中所有满足条件的文件路径找出来,我们定义一个函数,该函数将递归指定文件夹路径,返回其中所有满足条件(即后缀名为 .md 或者 .txt 的文件)的文件路径:

import os 
def get_files(dir_path):# args:dir_path,目标文件夹路径file_list = []for filepath, dirnames, filenames in os.walk(dir_path):# os.walk 函数将递归遍历指定文件夹for filename in filenames:# 通过后缀名判断文件类型是否满足要求if filename.endswith(".md"):# 如果满足要求,将其绝对路径加入到结果列表file_list.append(os.path.join(filepath, filename))elif filename.endswith(".txt"):file_list.append(os.path.join(filepath, filename))return file_list

得到所有目标文件路径之后,我们可以使用 LangChain 提供的 FileLoader 对象来加载目标文件,得到由目标文件解析出的纯文本内容。由于不同类型的文件需要对应不同的 FileLoader,我们判断目标文件类型,并针对性调用对应类型的 FileLoader,同时,调用 FileLoader 对象的 load 方法来得到加载之后的纯文本对象:

from tqdm import tqdm
from langchain.document_loaders import UnstructuredFileLoader
from langchain.document_loaders import UnstructuredMarkdownLoaderdef get_text(dir_path):# args:dir_path,目标文件夹路径# 首先调用上文定义的函数得到目标文件路径列表file_lst = get_files(dir_path)# docs 存放加载之后的纯文本对象docs = []# 遍历所有目标文件for one_file in tqdm(file_lst):file_type = one_file.split('.')[-1]if file_type == 'md':loader = UnstructuredMarkdownLoader(one_file)elif file_type == 'txt':loader = UnstructuredFileLoader(one_file)else:# 如果是不符合条件的文件,直接跳过continuedocs.extend(loader.load())return docs

使用上文函数,我们得到的 docs 为一个纯文本对象对应的列表。

docs = get_text('/root/autodl-tmp/sweettalk-django4.2')

得到该列表之后,我们就可以将它引入到 LangChain 框架中构建向量数据库。由纯文本对象构建向量数据库,我们需要先对文本进行分块,接着对文本块进行向量化。

LangChain 提供了多种文本分块工具,此处我们使用字符串递归分割器,并选择分块大小为 500,块重叠长度为 150:

from langchain.text_splitter import RecursiveCharacterTextSplittertext_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=150)
split_docs = text_splitter.split_documents(docs)  

接着我们选用开源词向量模型 Sentence Transformer 来进行文本向量化。

LangChain 提供了直接引入 HuggingFace 开源社区中的模型进行向量化的接口:

from langchain.embeddings.huggingface import HuggingFaceEmbeddingsembeddings = HuggingFaceEmbeddings(model_name="/root/autodl-tmp/embedding_model")

同时,我们选择 Chroma 作为向量数据库,基于上文分块后的文档以及加载的开源向量化模型,将语料加载到指定路径下的向量数据库:

from langchain.vectorstores import Chroma# 定义持久化路径
persist_directory = 'data_base/vector_db/chroma'
# 加载数据库
vectordb = Chroma.from_documents(documents=split_docs,embedding=embeddings,persist_directory=persist_directory  # 允许我们将persist_directory目录保存到磁盘上
)
# 将加载的向量数据库持久化到磁盘上
vectordb.persist()

将上述代码整合在一起为知识库搭建的脚本:

# 首先导入所需第三方库
from langchain.document_loaders import UnstructuredFileLoader
from langchain.document_loaders import UnstructuredMarkdownLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from tqdm import tqdm
import os# 获取文件路径函数
def get_files(dir_path):# args:dir_path,目标文件夹路径file_list = []for filepath, dirnames, filenames in os.walk(dir_path):# os.walk 函数将递归遍历指定文件夹for filename in filenames:# 通过后缀名判断文件类型是否满足要求if filename.endswith(".md"):# 如果满足要求,将其绝对路径加入到结果列表file_list.append(os.path.join(filepath, filename))elif filename.endswith(".txt"):file_list.append(os.path.join(filepath, filename))return file_list# 加载文件函数
def get_text(dir_path):# args:dir_path,目标文件夹路径# 首先调用上文定义的函数得到目标文件路径列表file_lst = get_files(dir_path)# docs 存放加载之后的纯文本对象docs = []# 遍历所有目标文件for one_file in tqdm(file_lst):file_type = one_file.split('.')[-1]if file_type == 'md':loader = UnstructuredMarkdownLoader(one_file)elif file_type == 'txt':loader = UnstructuredFileLoader(one_file)else:# 如果是不符合条件的文件,直接跳过continuedocs.extend(loader.load())return docs# 目标文件夹
tar_dir = ["/root/autodl-tmp/sweettalk-django4.2",
]# 加载目标文件
docs = []
for dir_path in tar_dir:docs.extend(get_text(dir_path))# 对文本进行分块
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=150)
split_docs = text_splitter.split_documents(docs)# 加载开源词向量模型
embeddings = HuggingFaceEmbeddings(model_name="/root/autodl-tmp/embedding_model")# 构建向量数据库
# 定义持久化路径
persist_directory = 'data_base/vector_db/chroma'
# 加载数据库
vectordb = Chroma.from_documents(documents=split_docs,embedding=embeddings,persist_directory=persist_directory  # 允许我们将persist_directory目录保存到磁盘上
)
# 将加载的向量数据库持久化到磁盘上
vectordb.persist()

运行上述脚本,即可在本地构建已持久化的向量数据库,后续直接导入该数据库即可,无需重复构建。

Yi 接入LangChain

为便捷构建 LLM 应用,我们需要基于本地部署的 YiLM,自定义一个 LLM 类,将 Yi 接入到 LangChain 框架中。完成自定义 LLM 类之后,可以以完全一致的方式调用 LangChain 的接口,而无需考虑底层模型调用的不一致。

基于本地部署的 Yi 自定义 LLM 类并不复杂,我们只需从 LangChain.llms.base.LLM 类继承一个子类,并重写构造函数与 _call 函数即可:

from langchain.llms.base import LLM
from typing import Any, List, Optional
from langchain.callbacks.manager import CallbackManagerForLLMRun
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig, LlamaTokenizerFast
import torchclass Yi_LLM(LLM):# 基于本地 Yi 自定义 LLM 类tokenizer: AutoTokenizer = Nonemodel: AutoModelForCausalLM = Nonedef __init__(self, mode_name_or_path :str):super().__init__()print("正在从本地加载模型...")self.tokenizer = AutoTokenizer.from_pretrained(mode_name_or_path, trust_remote_code=True, use_fast=False)self.model = AutoModelForCausalLM.from_pretrained(mode_name_or_path, trust_remote_code=True,torch_dtype=torch.bfloat16,device_map="auto")self.model.generation_config = GenerationConfig.from_pretrained(mode_name_or_path)self.model.generation_config.pad_token_id = self.model.generation_config.eos_token_idself.model = self.model.eval()print("完成本地模型的加载")def _call(self, prompt : str, stop: Optional[List[str]] = None,run_manager: Optional[CallbackManagerForLLMRun] = None,**kwargs: Any):messages = [{"role": "user", "content": prompt }]input_ids = self.tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')output_ids = self.model.generate(input_ids.to('cuda'))response = self.tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)return response@propertydef _llm_type(self) -> str:return "Yi_LLM"

在上述类定义中,我们分别重写了构造函数和 _call 函数:对于构造函数,我们在对象实例化的一开始加载本地部署的 Yi 模型,从而避免每一次调用都需要重新加载模型带来的时间过长;_call 函数是 LLM 类的核心函数,LangChain 会调用该函数来调用 LLM,在该函数中,我们调用已实例化模型的 chat 方法,从而实现对模型的调用并返回调用结果。

在整体项目中,我们将上述代码封装为 LLM.py,后续将直接从该文件中引入自定义的 LLM 类。

构建检索问答链

LangChain 通过提供检索问答链对象来实现对于 RAG 全流程的封装。即我们可以调用一个 LangChain 提供的 RetrievalQA 对象,通过初始化时填入已构建的数据库和自定义 LLM 作为参数,来简便地完成检索增强问答的全流程,LangChain 会自动完成基于用户提问进行检索、获取相关文档、拼接为合适的 Prompt 并交给 LLM 问答的全部流程。

首先我们需要将上文构建的向量数据库导入进来,我们可以直接通过 Chroma 以及上文定义的词向量模型来加载已构建的数据库:

from langchain.vectorstores import Chroma
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
import os# 定义 Embeddings
embeddings = HuggingFaceEmbeddings(model_name="/root/autodl-tmp/embedding_model")# 向量数据库持久化路径
persist_directory = 'data_base/vector_db/chroma'# 加载数据库
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embeddings
)

上述代码得到的 vectordb 对象即为我们已构建的向量数据库对象,该对象可以针对用户的 query 进行语义向量检索,得到与用户提问相关的知识片段。

接着,我们实例化一个基于 Yi 自定义的 LLM 对象:

from LLM import Yi_LLM
llm = Yi_LLM(mode_name_or_path = "/root/autodl-tmp/01ai/Yi-6B-Chat")
llm("你是谁")

在这里插入图片描述

构建检索问答链,还需要构建一个 Prompt Template,该 Template 其实基于一个带变量的字符串,在检索之后,LangChain 会将检索到的相关文档片段填入到 Template 的变量中,从而实现带知识的 Prompt 构建。我们可以基于 LangChain 的 Template 基类来实例化这样一个 Template 对象:

from langchain.prompts import PromptTemplate# 我们所构造的 Prompt 模板
template = """使用以下上下文来回答最后的问题。如果你不知道答案,就说你不知道,不要试图编造答案。尽量使答案简明扼要。总是在回答的最后说“谢谢你的提问!”。
{context}
问题: {question}
有用的回答:"""# 调用 LangChain 的方法来实例化一个 Template 对象,该对象包含了 context 和 question 两个变量,在实际调用时,这两个变量会被检索到的文档片段和用户提问填充
QA_CHAIN_PROMPT = PromptTemplate(input_variables=["context","question"],template=template)

最后,可以调用 LangChain 提供的检索问答链构造函数,基于我们的自定义 LLM、Prompt Template 和向量知识库来构建一个基于 Yi 的检索问答链:

from langchain.chains import RetrievalQAqa_chain = RetrievalQA.from_chain_type(llm,retriever=vectordb.as_retriever(),return_source_documents=True,chain_type_kwargs={"prompt":QA_CHAIN_PROMPT})

得到的 qa_chain 对象即可以实现我们的核心功能,即基于 Yi 模型的专业知识库助手。我们可以对比该检索问答链和纯 LLM 的问答效果:

question = "sweettalk_django项目是什么"
result = qa_chain({"query": question})
print("检索问答链回答 question 的结果:")
print(result["result"])print("-------------------")
# 仅 LLM 回答效果
result_2 = llm(question)
print("大模型回答 question 的结果:")
print(result_2)

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/614849.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python编写一个抽奖小程序,新手入门案例,简单易上手!

“ 本篇文章将以简明易懂的方式引导小白通过Python编写一个简单的抽奖小程序,无需太多的编程经验。通过本文,将学习如何使用Python内置的随机模块实现随机抽奖,以及如何利用列表等基本数据结构来管理和操作参与抽奖的人员名单。无论你是Pytho…

私有化即时通讯软件,WorkPlus提供的私有化、安全通讯解决方案

在当今信息化快速发展的时代,安全问题已经成为各行各业关注的焦点。特别是在金融、政府单位和芯片等关键行业,信息安全的重要性不言而喻。这些行业涉及到大量的敏感数据和关键信息,一旦发生泄露,可能会对国家安全、企业利益甚至个…

Django中的静态文件、路径、访问静态文件的方法

1.什么是静态文件 不能与服务器端做动态交互的文件都是静态文件 如:图片,css,js,音频,视频,html文件(部分) 2.静态文件配置 在 settings.py 中配置一下两项内容: 1.配置静态文件的访问路径 通过哪个url地址找静态文件 STATIC_URL ‘/static/’ 说…

跟TED演讲学英文:Why AI will spark exponential economic growth by Cathie Wood

TED英文文稿 文章目录 TED英文文稿Why AI will spark exponential economic growthIntroductionVocabularyTranscriptSummary后记 Why AI will spark exponential economic growth Link: https://www.ted.com/talks/cathie_wood_why_ai_will_spark_exponential_economic_growth…

[Java、Android面试]_18_详解Handler机制 常见handler面试题(非常重要,非常高频!!)

本人今年参加了很多面试,也有幸拿到了一些大厂的offer,整理了众多面试资料,后续还会分享众多面试资料。 整理成了面试系列,由于时间有限,每天整理一点,后续会陆续分享出来,感兴趣的朋友可关注收…

vue 原理【详解】MVVM、响应式、模板编译、虚拟节点 vDom、diff 算法

vue 的设计模式 —— MVVM M —— Model 模型,即数据V —— View 视图,即DOM渲染VM —— ViewModel 视图模型,用于实现Model和View的通信,即数据改变驱动视图渲染,监听视图事件修改数据 初次渲染 将模板编译为 render …

Rust那些事之ToOwned trait

Rust那些事之ToOwned trait 默认的Clone trait有两个问题: 只支持固定大小的类型转换也只能从&T到T,不能够从&T到U的转换。 pub trait Clone: Sized 那么如何实现呢?于是便有了ToOwned trait。 ToOwned内部有一个关联类型Owned&#…

redis-缓存穿透与雪崩

一,缓存穿透(查不到) 在默认情况下,用户请求数据时,会先在缓存(Redis)中查找,若没找到即缓存未命中,再在数据库中进行查找,数量少可能问题不大,可是一旦大量的请求数据&a…

洛谷-P1596 [USACO10OCT] Lake Counting S

P1596 [USACO10OCT] Lake Counting S - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) #include<bits/stdc.h> using namespace std; const int N110; int m,n; char g[N][N]; bool st[N][N]; //走/没走 int dx[] {-1,-1,-1,0,0,1,1,1}; //八联通 int dy[] {-1,0,1,1,-1,1…

Linux中安装seata

Linux中安装seata 一、准备1、环境2、下载3、上传到服务器4、解压 二、配置1、备份配置文件2、导入sql3、修改配置前4、修改配置后5、在nacos中配置 三、使用1、启动2、关闭 一、准备 1、环境 因为要在 nacos 中配置&#xff0c;要求安装并启动 nacos 。可以参考这篇博客。 …

微服务学习3

目录 1.微服务保护 1.1.服务保护方案 1.1.1.请求限流 1.1.2.线程隔离 1.1.3.服务熔断 1.2.Sentinel 1.2.1.微服务整合 1.2.2.请求限流 1.3.线程隔离 1.3.1.OpenFeign整合Sentinel 1.3.2.配置线程隔离 1.4.服务熔断 1.4.1.编写降级逻辑 1.4.2服务熔断 2.分布式事…

SecureCRT通过USB-Servial ch340串口无法连接单片机

通过USB To TTL连线 STM32F103-PRO&#xff0c;烧制程序到单片机上&#xff0c;通过SecureCRT通过USB-Servial ch340串口无法链接RS232升USB转TTL连接正确 开发板连接正确 问题&#xff1a;SecureCRT串口连接没有反应 问题分析&#xff1a;1、检查ch340串口驱动 查看设备管…