day05-Elasticsearch01

1.初识elasticsearch

1.1.了解ES

1.1.1.elasticsearch的作用

elasticsearch 是一款非常强大的开源搜索引擎,具备非常多强大功能,可以帮助我们从海量数据中快速找到需要的内容

例如:

  • 在 GitHub 搜索代码
  • 在电商网站搜索商品
  • 在百度搜索答案
  • 在打车软件搜索附近的车

1.1.2.ELK技术栈

elasticsearch 结合 kibana、Logstash、Beats,也就是 elastic stack(ELK)。被广泛应用在日志数据分析、实时监控等领域:
在这里插入图片描述

而 elasticsearch 是 elastic stack 的核心,负责存储、搜索、分析数据。
在这里插入图片描述

1.1.3.elasticsearch 和 lucene

elasticsearch 底层是基于 lucene 来实现的。

Lucene 是一个 Java 语言的搜索引擎类库,是 Apache 公司的顶级项目,由DougCutting于1999年研发。

官网地址:https://lucene.apache.org/ 。
在这里插入图片描述

elasticsearch 的发展历史:

  • 2004年Shay Banon基于Lucene开发了Compass
  • 2010年Shay Banon 重写了Compass,取名为Elasticsearch。

在这里插入图片描述

1.1.4.为什么不是其他搜索技术?

目前比较知名的搜索引擎技术排名:
在这里插入图片描述

1.1.5.总结

什么是 elasticsearch?

  • 一个开源的分布式搜索引擎,可以用来实现搜索、日志统计、分析、系统监控等功能

什么是 elastic stack(ELK)?

  • 是以 elasticsearch 为核心的技术栈,包括 beats、Logstash、kibana、elasticsearch

什么是 Lucene?

  • 是 Apache 的开源搜索引擎类库,提供了搜索引擎的核心 API

1.2.倒排索引

倒排索引的概念是基于MySQL这样的正向索引而言的。

1.2.1.正向索引

那么什么是正向索引呢?例如给下表(tb_goods)中的 id 创建索引:
在这里插入图片描述

如果是根据id查询,那么直接走索引,查询速度非常快。

但如果是基于 title 做模糊查询,只能是逐行扫描数据,流程如下:

  1. 用户搜索数据,条件是 title 符合 "%手机%"
  2. 逐行获取数据,比如 id 为 1 的数据
  3. 判断数据中的 title 是否符合用户搜索条件
  4. 如果符合则放入结果集,不符合则丢弃。回到步骤 1

逐行扫描,也就是全表扫描,随着数据量增加,其查询效率也会越来越低。当数据量达到数百万时,就是一场灾难。

1.2.2.倒排索引

倒排索引中有两个非常重要的概念:

  • 文档(Document):用来搜索的数据,其中的每一条数据就是一个文档。例如一个网页、一个商品信息
  • 词条(Term):对文档数据或用户搜索数据,利用某种算法分词,得到的具备含义的词语就是词条。例如:我是中国人,就可以分为:我、是、中国人、中国、国人这样的几个词条

创建倒排索引是对正向索引的一种特殊处理,流程如下:

  • 将每一个文档的数据利用算法分词,得到一个个词条
  • 创建表,每行数据包括词条、词条所在文档id、位置等信息
  • 因为词条唯一性,可以给词条创建索引,例如hash表结构索引

如图:
在这里插入图片描述

倒排索引的搜索流程如下(以搜索"华为手机"为例):

  1. 用户输入条件"华为手机"进行搜索。
  2. 用户输入内容分词,得到词条:华为手机
  3. 拿着词条在倒排索引中查找,可以得到包含词条的文档id:1、2、3。
  4. 拿着文档 id 到正向索引中查找具体文档。

如图:
在这里插入图片描述

虽然要先查询倒排索引,再查询倒排索引,但是无论是词条、还是文档 id 都建立了索引,查询速度非常快!无需全表扫描。

1.2.3.正向和倒排

那么为什么一个叫做正向索引,一个叫做倒排索引呢?

  • 正向索引是最传统的,根据 id 索引的方式。但根据词条查询时,必须先逐条获取每个文档,然后判断文档中是否包含所需要的词条,是根据文档找词条的过程
  • 倒排索引则相反,是先找到用户要搜索的词条,根据词条得到保护词条的文档的 id,然后根据id获取文档。是根据词条找文档的过程

正向索引

  • 优点:
    • 可以给多个字段创建索引
    • 根据索引字段搜索、排序速度非常快
  • 缺点:
    • 根据非索引字段,或者索引字段中的部分词条查找时,只能全表扫描。

倒排索引

  • 优点:
    • 根据词条搜索、模糊搜索时,速度非常快
  • 缺点:
    • 只能给词条创建索引,而不是字段
    • 无法根据字段做排序

1.3.es的一些概念

1.3.1.文档和字段

elasticsearch 是面向 文档(Document) 存储的,可以是数据库中的一条商品数据,一个订单信息。文档数据会被序列化为 json 格式后存储在 elasticsearch 中:
在这里插入图片描述

而 Json 文档中往往包含很多的字段(Field),类似于数据库中的列。

1.3.2.索引和映射

索引(Index),就是相同类型的文档的集合。

例如:

  • 所有用户文档,就可以组织在一起,称为用户的索引;
  • 所有商品的文档,可以组织在一起,称为商品的索引;
  • 所有订单的文档,可以组织在一起,称为订单的索引;

在这里插入图片描述

因此,我们可以把索引当做是数据库中的表。

数据库的表会有约束信息,用来定义表的结构、字段的名称、类型等信息。因此,索引库中就有 映射(mapping),是索引中文档的字段约束信息,类似表的结构约束。

1.3.3.mysql与elasticsearch

我们统一的把 mysql 与elasticsearch的概念做一下对比:

MySQLElasticsearch说明
TableIndex索引(index),就是文档的集合,类似数据库的表(table)
RowDocument文档(Document),就是一条条的数据,类似数据库中的行(Row),文档都是JSON格式
ColumnField字段(Field),就是JSON文档中的字段,类似数据库中的列(Column)
SchemaMappingMapping(映射)是索引中文档的约束,例如字段类型约束。类似数据库的表结构(Schema)
SQLDSLDSL是elasticsearch提供的JSON风格的请求语句,用来操作elasticsearch,实现CRUD
  • Mysql:擅长事务类型操作,可以确保数据的安全和一致性
  • Elasticsearch:擅长海量数据的搜索、分析、计算

因此在企业中,往往是两者结合使用:

  • 对安全性要求较高的写操作,使用mysql实现
  • 对查询性能要求较高的搜索需求,使用elasticsearch实现
  • 两者再基于某种方式,实现数据的同步,保证一致性

在这里插入图片描述

1.4.安装 es、kibana

1.4.1.安装

参考课前资料:
安装elasticsearch.md

1.4.1.1 部署单点 es

(1)创建网络
因为我们还需要部署 kibana 容器,因此需要让 es 和 kibana 容器互联。这里先创建一个网络:

docker network create es-net

(2)加载镜像
这里我们采用 elasticsearch 的 7.12.1 版本的镜像,这个镜像体积非常大,接近1G。不建议大家自己 pull。
课前资料提供了镜像的tar包,大家将其上传到虚拟机中,然后运行命令加载即可:

# 导入数据
docker load -i es.tar

(3)运行
运行 docker 命令,部署单点es:

docker run -d \--name es \-e "ES_JAVA_OPTS=-Xms512m -Xmx512m" \-e "discovery.type=single-node" \-v es-data:/usr/share/elasticsearch/data \-v es-plugins:/usr/share/elasticsearch/plugins \--privileged \--network es-net \-p 9200:9200 \-p 9300:9300 \
elasticsearch:7.12.1
1.4.1.2 部署 kibana

(1)部署
运行 docker 命令,部署 kibana

docker run -d \
--name kibana \
-e ELASTICSEARCH_HOSTS=http://es:9200 \
--network=es-net \
-p 5601:5601  \
kibana:7.12.1
  • --network es-net :加入一个名为 es-net 的网络中,与 elasticsearch 在同一个网络中
  • -e ELASTICSEARCH_HOSTS=http://es:9200":设置 elasticsearch 的地址,因为 kibana 已经与 elasticsearch 在一个网络,因此可以用容器名直接访问elasticsearch
  • -p 5601:5601:端口映射配置

可以通过命令:docker logs -f kibana 查看运行日志,当查看到下面的日志,说明成功:在这里插入图片描述
此时,在浏览器输入地址访问:http://192.168.150.101:5601,即可看到结果

(2)DevTools
kibana 中提供了一个 DevTools 界面:在这里插入图片描述
这个界面中可以编写DSL来操作elasticsearch。并且对DSL语句有自动补全功能。

1.4.2.分词器

es 在创建倒排索引时需要对文档分词;在搜索时,需要对用户输入内容分词。但默认的分词规则对中文处理并不友好。

我们在kibana的DevTools中测试:

POST /_analyze
{"analyzer": "standard","text": "黑马程序员学习java太棒了!"
}

语法说明:

  • POST:请求方式
  • /_analyze:请求路径,这里省略了http://192.168.150.101:9200,有kibana帮我们补充
  • 请求参数,json风格:
    • analyzer:分词器类型,这里是默认的standard分词器
    • text:要分词的内容

处理中文分词,一般会使用 IK 分词器。https://github.com/medcl/elasticsearch-analysis-ik

安装 IK 分词器,参考课前资料《安装elasticsearch.md》

ik 分词器包含两种模式:

  • ik_smart:最少切分,粗粒度
  • ik_max_word:最细切分,细粒度

ik分词器-拓展词库

要拓展ik分词器的词库,只需要修改一个ik分词器目录中的config目录中的IkAnalyzer.cfg.xml文件:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties><comment>IK Analyzer 扩展配置</comment><!--用户可以在这里配置自己的扩展字典 *** 添加扩展词典--><entry key="ext_dict">ext.dic</entry>
</properties>

然后在名为ext.dic的文件中,添加想要拓展的词语即可:

传智播客
奥力给

ik分词器-停用词库

要禁用某些敏感词条,只需要修改一个ik分词器目录中的config目录中的IkAnalyzer.cfg.xml文件:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties><comment>IK Analyzer 扩展配置</comment><!--用户可以在这里配置自己的扩展字典--><entry key="ext_dict">ext.dic</entry><!--用户可以在这里配置自己的扩展停止词字典  *** 添加停用词词典--><entry key="ext_stopwords">stopword.dic</entry>
</properties>

然后在名为stopword.dic的文件中,添加想要拓展的词语即可:

敏感词汇

1.4.3.总结

分词器的作用是什么?

  • 创建倒排索引时对文档分词
  • 用户搜索时,对输入的内容分词

IK分词器有几种模式?

  • ik_smart:智能切分,粗粒度
  • ik_max_word:最细切分,细粒度

IK 分词器如何拓展词条?如何停用词条?

  • 利用 config 目录的 IkAnalyzer.cfg.xml 文件添加拓展词典和停用词典
  • 在词典中添加拓展词条或者停用词条

2.索引库操作

索引库就类似数据库表,mapping 映射就类似表的结构。

我们要向 es 中存储数据,必须先创建“库”和“表”。

2.1.mapping 映射属性

mapping 是对索引库中文档的约束,常见的 mapping 属性包括:

  • type:字段数据类型,常见的简单类型有:
    • 字符串:text(可分词的文本)、keyword(精确值,例如:品牌、国家、ip地址)
    • 数值:long、integer、short、byte、double、float、
    • 布尔:boolean
    • 日期:date
    • 对象:object
  • index:是否创建索引,默认为true
  • analyzer:使用哪种分词器
  • properties:该字段的子字段

例如下面的json文档:

{"age": 21,"weight": 52.1,"isMarried": false,"info": "黑马程序员Java讲师","email": "zy@itcast.cn","score": [99.1, 99.5, 98.9],"name": {"firstName": "云","lastName": "赵"}
}

对应的每个字段映射(mapping):

  • age:类型为 integer;参与搜索,因此需要index为true;无需分词器
  • weight:类型为float;参与搜索,因此需要index为true;无需分词器
  • isMarried:类型为boolean;参与搜索,因此需要index为true;无需分词器
  • info:类型为字符串,需要分词,因此是text;参与搜索,因此需要index为true;分词器可以用ik_smart
  • email:类型为字符串,但是不需要分词,因此是keyword;不参与搜索,因此需要index为false;无需分词器
  • score:虽然是数组,但是我们只看元素的类型,类型为float;参与搜索,因此需要index为true;无需分词器
  • name:类型为object,需要定义多个子属性
    • name.firstName;类型为字符串,但是不需要分词,因此是keyword;参与搜索,因此需要index为true;无需分词器
    • name.lastName;类型为字符串,但是不需要分词,因此是keyword;参与搜索,因此需要index为true;无需分词器

2.2.索引库的 CRUD

这里我们统一使用 Kibana 编写 DSL 的方式来演示。

2.2.1.创建索引库和映射

基本语法:
  • 请求方式:PUT
  • 请求路径:/索引库名,可以自定义
  • 请求参数:mapping映射

格式:

PUT /索引库名称
{"mappings": {"properties": {"字段名":{"type": "text","analyzer": "ik_smart"},"字段名2":{"type": "keyword","index": "false"},"字段名3":{"properties": {"子字段": {"type": "keyword"}}},// ...略}}
}
示例:
PUT /heima
{"mappings": {"properties": {"info":{"type": "text","analyzer": "ik_smart"},"email":{"type": "keyword","index": "falsae"},"name":{"properties": {"firstName": {"type": "keyword"}}},// ... 略}}
}

2.2.2.查询索引库

基本语法

  • 请求方式:GET
  • 请求路径:/索引库名
  • 请求参数:无

格式

GET /索引库名

示例
在这里插入图片描述

2.2.3.修改索引库

倒排索引结构虽然不复杂,但是一旦数据结构改变(比如改变了分词器),就需要重新创建倒排索引,这简直是灾难。因此索引库 一旦创建,无法修改 mapping

虽然无法修改 mapping 中已有的字段,但是却允许添加新的字段到 mapping 中,因为不会对倒排索引产生影响。

语法说明

PUT /索引库名/_mapping
{"properties": {"新字段名":{"type": "integer"}}
}

示例
在这里插入图片描述

2.2.4.删除索引库

语法:

  • 请求方式:DELETE
  • 请求路径:/索引库名
  • 请求参数:无

格式:

DELETE /索引库名

在 kibana 中测试:
在这里插入图片描述

2.2.5.总结

索引库操作有哪些?

  • 创建索引库:PUT /索引库名
  • 查询索引库:GET /索引库名
  • 删除索引库:DELETE /索引库名
  • 添加字段:PUT /索引库名/_mapping

3.文档操作

3.1.新增文档

语法:

POST /索引库名/_doc/文档id
{"字段1": "值1","字段2": "值2","字段3": {"子属性1": "值3","子属性2": "值4"},// ...
}

示例:

POST /heima/_doc/1
{"info": "黑马程序员Java讲师","email": "zy@itcast.cn","name": {"firstName": "云","lastName": "赵"}
}

响应:
在这里插入图片描述

3.2.查询文档

根据rest风格,新增是 post,查询应该是 get,不过查询一般都需要条件,这里我们把文档id带上。

语法:

GET /{索引库名称}/_doc/{id}

通过kibana查看数据:

GET /heima/_doc/1

查看结果:
在这里插入图片描述

3.3.删除文档

删除使用DELETE请求,同样,需要根据id进行删除:

语法:

DELETE /{索引库名}/_doc/id值

示例:

# 根据id删除数据
DELETE /heima/_doc/1

结果:
在这里插入图片描述

3.4.修改文档

修改有两种方式:

  • 全量修改:直接覆盖原来的文档
  • 增量修改:修改文档中的部分字段

3.4.1.全量修改

全量修改是覆盖原来的文档,其本质是:

  • 根据指定的 id 删除文档
  • 新增一个相同 id 的文档

注意:如果根据 id 删除时,id 不存在,第二步的新增也会执行,也就从修改变成了新增操作了。

语法:

PUT /{索引库名}/_doc/文档id
{"字段1": "值1","字段2": "值2",// ... 略
}

示例:

PUT /heima/_doc/1
{"info": "黑马程序员高级Java讲师","email": "zy@itcast.cn","name": {"firstName": "云","lastName": "赵"}
}

3.4.2.增量修改

增量修改是只修改指定 id 匹配的文档中的部分字段。

语法:

POST /{索引库名}/_update/文档id
{"doc": {"字段名": "新的值",}
}

示例:

POST /heima/_update/1
{"doc": {"email": "ZhaoYun@itcast.cn"}
}

3.5.总结

文档操作有哪些?

  • 创建文档:POST /{索引库名}/_doc/文档id { json文档 }
  • 查询文档:GET /{索引库名}/_doc/文档id
  • 删除文档:DELETE /{索引库名}/_doc/文档id
  • 修改文档:
    • 全量修改:PUT /{索引库名}/_doc/文档id { json文档 }
    • 增量修改:POST /{索引库名}/_update/文档id { “doc”: {字段}}

4. RestAPI

ES 官方提供了各种不同语言的客户端,用来操作 ES。这些客户端的本质就是组装 DSL 语句,通过 http 请求发送给 ES。

官方文档地址:https://www.elastic.co/guide/en/elasticsearch/client/index.html

其中的 Java Rest Client 又包括两种:

  • Java Low Level Rest Client
  • Java High Level Rest Client

在这里插入图片描述

4.0.导入Demo工程

4.0.1.导入数据

首先导入课前资料提供的数据库数据:
tb_hotel.sql

数据结构如下:

CREATE TABLE `tb_hotel` (`id` bigint(20) NOT NULL COMMENT '酒店id',`name` varchar(255) NOT NULL COMMENT '酒店名称;例:7天酒店',`address` varchar(255) NOT NULL COMMENT '酒店地址;例:航头路',`price` int(10) NOT NULL COMMENT '酒店价格;例:329',`score` int(2) NOT NULL COMMENT '酒店评分;例:45,就是4.5分',`brand` varchar(32) NOT NULL COMMENT '酒店品牌;例:如家',`city` varchar(32) NOT NULL COMMENT '所在城市;例:上海',`star_name` varchar(16) DEFAULT NULL COMMENT '酒店星级,从低到高分别是:1星到5星,1钻到5钻',`business` varchar(255) DEFAULT NULL COMMENT '商圈;例:虹桥',`latitude` varchar(32) NOT NULL COMMENT '纬度;例:31.2497',`longitude` varchar(32) NOT NULL COMMENT '经度;例:120.3925',`pic` varchar(255) DEFAULT NULL COMMENT '酒店图片;例:/img/1.jpg',PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

4.0.2.导入项目

然后导入课前资料提供的项目:
hotel-demo

项目结构如图:
在这里插入图片描述

4.0.3.mapping 映射分析

创建索引库,最关键的是 mapping 映射,而 mapping 映射要考虑的信息包括:

  • 字段名
  • 字段数据类型
  • 是否参与搜索
  • 是否需要分词
  • 如果分词,分词器是什么?

其中:

  • 字段名、字段数据类型,可以参考数据表结构的名称和类型
  • 是否参与搜索要分析业务来判断,例如图片地址,就无需参与搜索
  • 是否分词呢要看内容,内容如果是一个整体就无需分词,反之则要分词
  • 分词器,我们可以统一使用 ik_max_word

来看下酒店数据的索引库结构:

PUT /hotel
{"mappings": {"properties": {"id": {"type": "keyword"},"name":{"type": "text","analyzer": "ik_max_word","copy_to": "all"},"address":{"type": "keyword","index": false},"price":{"type": "integer"},"score":{"type": "integer"},"brand":{"type": "keyword","copy_to": "all"},"city":{"type": "keyword","copy_to": "all"},"starName":{"type": "keyword"},"business":{"type": "keyword"},"location":{"type": "geo_point"},"pic":{"type": "keyword","index": false},"all":{"type": "text","analyzer": "ik_max_word"}}}
}

几个特殊字段说明:

  • location:地理坐标,里面包含精度、纬度
  • all:一个组合字段,其目的是将多字段的值 利用 copy_to 合并,提供给用户搜索

地理坐标说明:
在这里插入图片描述

copy_to 说明:
在这里插入图片描述

4.0.4.初始化 RestClient

在 elasticsearch 提供的 API 中,与 elasticsearch 一切交互都封装在一个名为 RestHighLevelClient 的类中,必须先完成这个对象的初始化,建立与 elasticsearch 的连接。

分为三步:

1)引入es的RestHighLevelClient依赖:

<dependency><groupId>org.elasticsearch.client</groupId><artifactId>elasticsearch-rest-high-level-client</artifactId>
</dependency>

2)因为SpringBoot默认的ES版本是7.6.2,所以我们需要覆盖默认的ES版本:

<properties><java.version>1.8</java.version><elasticsearch.version>7.12.1</elasticsearch.version>
</properties>

3)初始化RestHighLevelClient:

初始化的代码如下:

RestHighLevelClient client = new RestHighLevelClient(RestClient.builder(HttpHost.create("http://192.168.150.101:9200")
));

这里为了单元测试方便,我们创建一个测试类HotelIndexTest,然后将初始化的代码编写在@BeforeEach方法中:

package cn.itcast.hotel;import org.apache.http.HttpHost;
import org.elasticsearch.client.RestHighLevelClient;
import org.junit.jupiter.api.AfterEach;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;import java.io.IOException;public class HotelIndexTest {private RestHighLevelClient client;@BeforeEachvoid setUp() {this.client = new RestHighLevelClient(RestClient.builder(HttpHost.create("http://192.168.150.101:9200")));}@AfterEachvoid tearDown() throws IOException {this.client.close();}
}

4.1.创建索引库

4.1.1.代码解读

创建索引库的API如下:
在这里插入图片描述

代码分为三步:

  • 1)创建Request对象。因为是创建索引库的操作,因此Request是CreateIndexRequest。
  • 2)添加请求参数,其实就是DSL的JSON参数部分。因为json字符串很长,这里是定义了静态字符串常量MAPPING_TEMPLATE,让代码看起来更加优雅。
  • 3)发送请求,client.indices()方法的返回值是IndicesClient类型,封装了所有与索引库操作有关的方法。

4.1.2.完整示例

在hotel-demo的cn.itcast.hotel.constants包下,创建一个类,定义mapping映射的JSON字符串常量:

package cn.itcast.hotel.constants;public class HotelConstants {public static final String MAPPING_TEMPLATE = "{\n" +"  \"mappings\": {\n" +"    \"properties\": {\n" +"      \"id\": {\n" +"        \"type\": \"keyword\"\n" +"      },\n" +"      \"name\":{\n" +"        \"type\": \"text\",\n" +"        \"analyzer\": \"ik_max_word\",\n" +"        \"copy_to\": \"all\"\n" +"      },\n" +"      \"address\":{\n" +"        \"type\": \"keyword\",\n" +"        \"index\": false\n" +"      },\n" +"      \"price\":{\n" +"        \"type\": \"integer\"\n" +"      },\n" +"      \"score\":{\n" +"        \"type\": \"integer\"\n" +"      },\n" +"      \"brand\":{\n" +"        \"type\": \"keyword\",\n" +"        \"copy_to\": \"all\"\n" +"      },\n" +"      \"city\":{\n" +"        \"type\": \"keyword\",\n" +"        \"copy_to\": \"all\"\n" +"      },\n" +"      \"starName\":{\n" +"        \"type\": \"keyword\"\n" +"      },\n" +"      \"business\":{\n" +"        \"type\": \"keyword\"\n" +"      },\n" +"      \"location\":{\n" +"        \"type\": \"geo_point\"\n" +"      },\n" +"      \"pic\":{\n" +"        \"type\": \"keyword\",\n" +"        \"index\": false\n" +"      },\n" +"      \"all\":{\n" +"        \"type\": \"text\",\n" +"        \"analyzer\": \"ik_max_word\"\n" +"      }\n" +"    }\n" +"  }\n" +"}";
}

在hotel-demo中的HotelIndexTest测试类中,编写单元测试,实现创建索引:

@Test
void createHotelIndex() throws IOException {// 1.创建Request对象CreateIndexRequest request = new CreateIndexRequest("hotel");// 2.准备请求的参数:DSL语句request.source(MAPPING_TEMPLATE, XContentType.JSON);// 3.发送请求client.indices().create(request, RequestOptions.DEFAULT);
}

4.2.删除索引库

删除索引库的DSL语句非常简单:

DELETE /hotel

与创建索引库相比:

  • 请求方式从 PUT 变为 DELTE
  • 请求路径不变
  • 无请求参数

所以代码的差异,注意体现在Request对象上。依然是三步走:

  • 1)创建Request对象。这次是DeleteIndexRequest对象
  • 2)准备参数。这里是无参
  • 3)发送请求。改用delete方法

在hotel-demo中的HotelIndexTest测试类中,编写单元测试,实现删除索引:

@Test
void testDeleteHotelIndex() throws IOException {// 1.创建Request对象DeleteIndexRequest request = new DeleteIndexRequest("hotel");// 2.发送请求client.indices().delete(request, RequestOptions.DEFAULT);
}

4.3.判断索引库是否存在

判断索引库是否存在,本质就是查询,对应的DSL是:

GET /hotel

因此与删除的Java代码流程是类似的。依然是三步走:

  • 1)创建Request对象。这次是GetIndexRequest对象
  • 2)准备参数。这里是无参
  • 3)发送请求。改用exists方法
@Test
void testExistsHotelIndex() throws IOException {// 1.创建Request对象GetIndexRequest request = new GetIndexRequest("hotel");// 2.发送请求boolean exists = client.indices().exists(request, RequestOptions.DEFAULT);// 3.输出System.err.println(exists ? "索引库已经存在!" : "索引库不存在!");
}

4.4.总结

JavaRestClient 操作 elasticsearch 的流程基本类似。核心是 client.indices() 方法来获取索引库的操作对象。

索引库操作的基本步骤:

  • 初始化 RestHighLevelClient
  • 创建 XxxIndexRequest。XXX 是 Create、Get、Delete
  • 准备 DSL( Create时需要,其它是无参)
  • 发送请求。调用 RestHighLevelClient#indices().xxx() 方法,xxx 是 create、exists、delete

5.RestClient 操作文档

为了与索引库操作分离,我们再次参加一个测试类,做两件事情:

  • 初始化 RestHighLevelClient
  • 我们的酒店数据在数据库,需要利用 IHotelService 去查询,所以注入这个接口
package cn.itcast.hotel;import cn.itcast.hotel.pojo.Hotel;
import cn.itcast.hotel.service.IHotelService;
import org.junit.jupiter.api.AfterEach;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;import java.io.IOException;
import java.util.List;@SpringBootTest
public class HotelDocumentTest {@Autowiredprivate IHotelService hotelService;private RestHighLevelClient client;@BeforeEachvoid setUp() {this.client = new RestHighLevelClient(RestClient.builder(HttpHost.create("http://192.168.150.101:9200")));}@AfterEachvoid tearDown() throws IOException {this.client.close();}
}

5.1.新增文档

我们要将数据库的酒店数据查询出来,写入 elasticsearch 中。

5.1.1.索引库实体类

数据库查询后的结果是一个Hotel类型的对象。结构如下:

@Data
@TableName("tb_hotel")
public class Hotel {@TableId(type = IdType.INPUT)private Long id;private String name;private String address;private Integer price;private Integer score;private String brand;private String city;private String starName;private String business;private String longitude;private String latitude;private String pic;
}

与我们的索引库结构存在差异:

  • longitude和latitude需要合并为location

因此,我们需要定义一个新的类型,与索引库结构吻合:

package cn.itcast.hotel.pojo;import lombok.Data;
import lombok.NoArgsConstructor;@Data
@NoArgsConstructor
public class HotelDoc {private Long id;private String name;private String address;private Integer price;private Integer score;private String brand;private String city;private String starName;private String business;private String location;private String pic;public HotelDoc(Hotel hotel) {this.id = hotel.getId();this.name = hotel.getName();this.address = hotel.getAddress();this.price = hotel.getPrice();this.score = hotel.getScore();this.brand = hotel.getBrand();this.city = hotel.getCity();this.starName = hotel.getStarName();this.business = hotel.getBusiness();this.location = hotel.getLatitude() + ", " + hotel.getLongitude();this.pic = hotel.getPic();}
}

5.1.2.语法说明

新增文档的DSL语句如下:

POST /{索引库名}/_doc/1
{"name": "Jack","age": 21
}

对应的java代码如图:
在这里插入图片描述

可以看到与创建索引库类似,同样是三步走:

  • 1)创建Request对象
  • 2)准备请求参数,也就是DSL中的JSON文档
  • 3)发送请求

变化的地方在于,这里直接使用 client.xxx() 的 API,不再需要 client.indices() 了。

5.1.3.完整代码

我们导入酒店数据,基本流程一致,但是需要考虑几点变化:

  • 酒店数据来自于数据库,我们需要先查询出来,得到hotel对象
  • hotel对象需要转为HotelDoc对象
  • HotelDoc需要序列化为json格式

因此,代码整体步骤如下:

  • 1)根据id查询酒店数据Hotel
  • 2)将Hotel封装为HotelDoc
  • 3)将HotelDoc序列化为JSON
  • 4)创建IndexRequest,指定索引库名和id
  • 5)准备请求参数,也就是JSON文档
  • 6)发送请求

在 hotel-demo 的 HotelDocumentTest 测试类中,编写单元测试:

@Test
void testAddDocument() throws IOException {// 1.根据id查询酒店数据Hotel hotel = hotelService.getById(61083L);// 2.转换为文档类型HotelDoc hotelDoc = new HotelDoc(hotel);// 3.将HotelDoc转jsonString json = JSON.toJSONString(hotelDoc);// 1.准备Request对象IndexRequest request = new IndexRequest("hotel").id(hotelDoc.getId().toString());// 2.准备Json文档request.source(json, XContentType.JSON);// 3.发送请求client.index(request, RequestOptions.DEFAULT);
}

5.2.查询文档

5.2.1.语法说明

查询的DSL语句如下:

GET /hotel/_doc/{id}

非常简单,因此代码大概分两步:

  • 准备Request对象
  • 发送请求

不过查询的目的是得到结果,解析为 HotelDoc,因此难点是结果的解析。完整代码如下:
在这里插入图片描述

可以看到,结果是一个JSON,其中文档放在一个_source属性中,因此解析就是拿到_source,反序列化为Java对象即可。

与之前类似,也是三步走:

  • 1)准备Request对象。这次是查询,所以是GetRequest
  • 2)发送请求,得到结果。因为是查询,这里调用client.get()方法
  • 3)解析结果,就是对JSON做反序列化

5.2.2.完整代码

在hotel-demo的HotelDocumentTest测试类中,编写单元测试:

@Test
void testGetDocumentById() throws IOException {// 1.准备RequestGetRequest request = new GetRequest("hotel", "61082");// 2.发送请求,得到响应GetResponse response = client.get(request, RequestOptions.DEFAULT);// 3.解析响应结果String json = response.getSourceAsString();HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);System.out.println(hotelDoc);
}

5.3.删除文档

删除的DSL为是这样的:

DELETE /hotel/_doc/{id}

与查询相比,仅仅是请求方式从DELETE变成GET,可以想象Java代码应该依然是三步走:

  • 1)准备Request对象,因为是删除,这次是DeleteRequest对象。要指定索引库名和id
  • 2)准备参数,无参
  • 3)发送请求。因为是删除,所以是client.delete()方法

在hotel-demo的HotelDocumentTest测试类中,编写单元测试:

@Test
void testDeleteDocument() throws IOException {// 1.准备RequestDeleteRequest request = new DeleteRequest("hotel", "61083");// 2.发送请求client.delete(request, RequestOptions.DEFAULT);
}

5.4.修改文档

5.4.1.语法说明

修改我们讲过两种方式:

  • 全量修改:本质是先根据id删除,再新增
  • 增量修改:修改文档中的指定字段值

在RestClient的API中,全量修改与新增的API完全一致,判断依据是ID:

  • 如果新增时,ID已经存在,则修改
  • 如果新增时,ID不存在,则新增

这里不再赘述,我们主要关注增量修改。
代码示例如图:
在这里插入图片描述

与之前类似,也是三步走:

  • 1)准备Request对象。这次是修改,所以是UpdateRequest
  • 2)准备参数。也就是JSON文档,里面包含要修改的字段
  • 3)更新文档。这里调用client.update()方法

5.4.2.完整代码

在hotel-demo的HotelDocumentTest测试类中,编写单元测试:

@Test
void testUpdateDocument() throws IOException {// 1.准备RequestUpdateRequest request = new UpdateRequest("hotel", "61083");// 2.准备请求参数request.doc("price", "952","starName", "四钻");// 3.发送请求client.update(request, RequestOptions.DEFAULT);
}

5.5.批量导入文档

案例需求:利用BulkRequest批量将数据库数据导入到索引库中。

步骤如下:

  • 利用mybatis-plus查询酒店数据
  • 将查询到的酒店数据(Hotel)转换为文档类型数据(HotelDoc)
  • 利用JavaRestClient中的BulkRequest批处理,实现批量新增文档

5.5.1.语法说明

批量处理BulkRequest,其本质就是将多个普通的CRUD请求组合在一起发送。
其中提供了一个add方法,用来添加其他请求:
在这里插入图片描述
可以看到,能添加的请求包括:

  • IndexRequest,也就是新增
  • UpdateRequest,也就是修改
  • DeleteRequest,也就是删除

因此Bulk中添加了多个IndexRequest,就是批量新增功能了。示例:
在这里插入图片描述

其实还是三步走:

  • 1)创建Request对象。这里是BulkRequest
  • 2)准备参数。批处理的参数,就是其它Request对象,这里就是多个IndexRequest
  • 3)发起请求。这里是批处理,调用的方法为client.bulk()方法

我们在导入酒店数据时,将上述代码改造成for循环处理即可。

5.5.2.完整代码

在hotel-demo的HotelDocumentTest测试类中,编写单元测试:

@Test
void testBulkRequest() throws IOException {// 批量查询酒店数据List<Hotel> hotels = hotelService.list();// 1.创建RequestBulkRequest request = new BulkRequest();// 2.准备参数,添加多个新增的Requestfor (Hotel hotel : hotels) {// 2.1.转换为文档类型HotelDocHotelDoc hotelDoc = new HotelDoc(hotel);// 2.2.创建新增文档的Request对象request.add(new IndexRequest("hotel").id(hotelDoc.getId().toString()).source(JSON.toJSONString(hotelDoc), XContentType.JSON));}// 3.发送请求client.bulk(request, RequestOptions.DEFAULT);
}

5.6.小结

文档操作的基本步骤:

  • 初始化RestHighLevelClient
  • 创建XxxRequest。XXX是Index、Get、Update、Delete、Bulk
  • 准备参数(Index、Update、Bulk时需要)
  • 发送请求。调用RestHighLevelClient#.xxx()方法,xxx是index、get、update、delete、bulk
  • 解析结果(Get时需要)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/615071.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++——StackQueue

目录 一Stack 1介绍 2接口 3模拟实现 4栈的oj题 二Queue 1介绍 2接口 3模拟实现 三容器适配器 1再谈栈和队列 四优先级队列 1接口 ​编辑 2仿函数 五dequeue的简单介绍 一Stack 1介绍 先来看看库中对栈的介绍&#xff1a; 1. stack是一种容器适配器&#x…

视频号小店究竟有什么秘密,值得商家疯狂入驻,商家必看!

大家好&#xff0c;我是电商花花。 我们都知道视频号和抖音本身都是一个短视频平台&#xff0c;但是随着直播电商的发展&#xff0c;背后的流量推动逐步显露出强大的红利市场和变现机会。 视频号小店流量大和赚钱之外&#xff0c;还非常适合普通人创业。 这也使得越来越多的…

web安全学习笔记【22】——文件上传(1)

WEB攻防-PHP应用&文件上传&函数缺陷&条件竞争&二次渲染&黑白名单&JS绕过 演示案例&#xff1a; PHP-原生态-文件上传-前后端验证PHP-原生态-文件上传-类型文件头验证PHP-原生态-文件上传-后缀黑白名单验证PHP-原生态-文件上传-解析配置&二次渲染…

【QT入门】Qt自定义控件与样式设计之控件提升与自定义控件

【QT入门】Qt自定义控件与样式设计之控件提升与自定义控件 往期回顾 【QT入门】Qt自定义控件与样式设计之QProgressBar用法及qss-CSDN博客 【QT入门】 Qt自定义控件与样式设计之QSlider用法及qss-CSDN博客 【QT入门】Qt自定义控件与样式设计之qss的加载方式-CSDN博客 一、最终…

flutter中鼠标检测事件的应用---主要在于网页端使用

flutter中鼠标检测事件的应用—主要在于网页端使用 鼠标放上去 主要代码 import package:flutter/material.dart;class CustomStack extends StatefulWidget {override_CustomStack createState() > _CustomStack(); }class _CustomStack extends State<CustomStack>…

c++中的内联函数和空指针

在C语言中我们学到了宏和宏函数&#xff0c;宏对于类型没有严格的限制&#xff0c;而且不需要建立栈帧&#xff0c;可以提高运行效率&#xff0c;但是宏不能进行调试&#xff0c;容易出错&#xff0c;而且没有类型检查。 为了补C语言中的坑&#xff0c;c中出现了内联函数inlin…

阿里云优惠券是什么?有什么用?如何领取?

阿里云作为国内领先的云计算服务提供商&#xff0c;为广大用户提供了高效、稳定、安全的云服务。为了帮助用户更好地使用阿里云&#xff0c;降低用户的成本&#xff0c;阿里云推出了优惠券活动。本文将为大家详细介绍阿里云优惠券是什么、有什么用以及如何领取。 一、阿里云优惠…

HTML 入门 ( 一 )

HTML文档创建 首先创建一个txt文本文档 修改文件后缀 HTML标签 标签结构 标签又称为元素,是HTML的基本组成单位分为: 双标签与单标签推荐小写标签名 结构: 双标签示例代码: <marquee> My name is Kvein. </marquee>单标签示例代码: <input>标签的并列与嵌…

测试接口时出现HttpMessageNotReadableException: Required request body is missing

问题 测试接口时出现org.springframework.http.converter.HttpMessageNotReadableException: Required request body is missing异常 原因 发送请求时没有传参数 解决办法 第一种方式: 传个参数 第二种方式&#xff1a;给个空的JSON

教你们如何用html+css做出漂亮的表格

这个HTML文档定义了一个简单的网页&#xff0c;主要用于展示一个群聊信息的表格。以下是关于这个表格的详细介绍&#xff1a; 基本结构&#xff1a; 文档以<!DOCTYPE html>开始&#xff0c;这是HTML5的文档类型声明。<html>标签是HTML文档的根元素。<head>部…

QA测试开发工程师面试题满分问答12: 用户上传照片如何设计测试用例并进行测试

针对用户上传照片的功能&#xff0c;以下是一些从 QA 角度设计测试用例的示例&#xff0c;涵盖了前端功能点、后端功能点、缓存、异常处理、资源占用、并发和网络等维度&#xff1a; 前端功能点&#xff1a; a. 用户界面&#xff1a;验证上传照片的用户界面是否易于使用和导航&…

centos 7 sshd服务无法自动随机启动

centos 7 sshd 服务无法伴随主机启动而启动&#xff0c;而使用systemctl start sshd可以启动&#xff0c;很奇怪。 后来使用Kimi查询&#xff0c;有提示“检查系统启动服务的顺序和状态” systemctl list-dependencies <service>确保所有依赖服务都已正常启动。 查看本…