最前沿・量子退火建模方法(1) : subQUBO讲解和python实现

前言

量子退火机在小规模问题上的效果得到了有效验证,但是由于物理量子比特的大规模制备以及噪声的影响,还没有办法再大规模的场景下应用。
这时候就需要我们思考,如何通过软件的方法怎么样把大的问题分解成小的问题,以便通过现在小规模的量子退火机解决。主要思路就是,同样的QUBO建模,怎么使用更少的量子比特。

下面的文章中,量子退火机伊辛机会混用。


一、subQUBO的创新点

先行的研究中,使用启发式方法将大型问题划分为较小的问题,并使用伊辛机进行求解,但划分后的问题的答案与原始大型问题的答案并不相同。达成协议的理论条件仍不清楚。早稻田大学的研究者开发出了subQUBO算法在保证分解后的小问题也能保证在原始大问题上的理论上做出了突破。

Atobe, Yuta, Masashi Tawada, and Nozomu Togawa. "Hybrid annealing method based on subQUBO model extraction with multiple solution instances." IEEE Transactions on Computers 71.10 (2021): 2606-2619.

subQUBO的创新点

  1. 首先研究将大规模组合优化问题划分为较小问题而不失去最优性的条件。该条件成立的话就证明,如果用伊辛机来解决一个满足条件的小问题,它就会和原来的大规模问题的答案相匹配。
  2. 还提出了一种新算法,成功地从大规模问题中提取出此类条件,将原始大规模问题缩小到伊辛机可以解决的问题规模,并迭代求解。所提出的算法通过基于理论支持将大规模问题分解为更小的问题来解决它,使得以比传统技术更高的精度解决原始大规模问题成为可能。
    在这里插入图片描述

二、subQUBO的详细思路

1. 怎么把大规模问题分解成小问题

1.1 逻辑前提:挑出错误后,回炉重造

  • 大规模组合优化问题的QUBO建模中,最终的答案由多个量子比特集合组成。
  • 如果你创建一个小规模问题,其中包括最终解的量子比特集合中的,所有不正确的量子比特集合
  • 并使用伊辛机解决该问题,则所有最终解的不正确的量子比特集合都将被纠正为正确的量子比特集合作为解。

1.2 具体实现:

实现方法: 可以创建一个大致包含所有不正确的量子比特集合的小问题,并使用伊辛机重复解决它。

  • 不正确的量子比特集合创建:
    – 我们使用传统的经典计算器来准备问题的多个候选答案。这些候选答案不一定是正确的,但在比较经典计算器求解得到的多个答案的量子比特集合的最终值。
    – 多个候选中匹配一致的就是正确的量子比特集合
    – 答案不匹配且不同的就是不正确的量子比特集合

  • 通过仅提取不正确的量子比特集合,并使用真实的伊辛机进行求解,最终可以获得整体的正确答案。

1.3 业界影响:

传统上,伊辛机很难解决大规模问题,因为可用位数受到硬件限制,但通过使用这种方法,可以使用伊辛机进行计算。因此,人们认为可以使用伊辛机(包括量子退火机)扩展现实世界组合优化问题的用例。此外,本研究尝试将经典计算机与伊辛机相结合来解决问题,这将大大扩展伊辛机的使用范围。

最新成果,参考以下新闻:
Quanmatic Co., Ltd.利用量子计算技术解决方案规模突破1亿比特

https://prtimes.jp/main/html/rd/p/000000015.000117406.html

三、subQUBO的python实现

  1. 导入库
import random
import itertools
import numpy as np
from dataclasses import dataclass
  1. 设置subQUBO所需参数
N_I = 20 # instance池
N_E = 10 # subQUBO的抽取次数
N_S = 10 # N_I个instance池中抽取的解的个数
sub_qubo_size = 5 # subQUBO的量子比特数
  1. QUBO建模

# 为了简单,使用TSP作为例子
NUM_CITY = 4
ALPHA = 1
np.random.seed(0)
num_spin = NUM_CITY ** 2distance_mtx = np.random.randint(1, 100, (NUM_CITY, NUM_CITY))
distance_mtx = np.tril(distance_mtx) + np.tril(distance_mtx).T - 2 * np.diag(distance_mtx.diagonal())# <<< Objective term >>>
qubo_obj = np.zeros((NUM_CITY**2, NUM_CITY**2), dtype=np.int32)
for t_u_v in itertools.product(range(NUM_CITY), repeat=3):t, u, v = t_u_v[0], t_u_v[1], t_u_v[2]idx_i = NUM_CITY * t + uif t < NUM_CITY - 1:idx_j = NUM_CITY * (t + 1) + velif t == NUM_CITY - 1:idx_j = vqubo_obj[idx_i, idx_j] += distance_mtx[u, v]
qubo_obj = np.triu(qubo_obj) + np.tril(qubo_obj).T - np.diag(np.diag(qubo_obj))# <<< Constraint term >>>
qubo_constraint = np.zeros((NUM_CITY**2, NUM_CITY**2), dtype=np.int32)
# Calculate constraint term1 : 1-hot of horizontal line
for t in range(NUM_CITY):for u in range(NUM_CITY - 1):for v in range(u + 1, NUM_CITY):qubo_constraint[NUM_CITY*t+u, NUM_CITY*t+v] += ALPHA * 2
# Linear term
for t_u in itertools.product(range(NUM_CITY), repeat=2):qubo_constraint[NUM_CITY*t_u[0]+t_u[1], NUM_CITY*t_u[0]+t_u[1]] += ALPHA * (-1)
const_constraint = ALPHA * NUM_CITY# Calculate constraint term2 : 1-hot of vertical line
# Quadratic term
for u in range(NUM_CITY):for t1 in range(NUM_CITY - 1):for t2 in range(t1+1, NUM_CITY):qubo_constraint[NUM_CITY*t1+u, NUM_CITY*t2+u] += ALPHA * 2
# Linear term
for u_t in itertools.product(range(NUM_CITY), repeat=2):qubo_constraint[NUM_CITY*u_t[1]+u_t[0], NUM_CITY*u_t[1]+u_t[0]] += ALPHA * (-1)
const_constraint += ALPHA * NUM_CITY
  1. 创建instance池

@dataclass
class Solution():"""Solution information.Attributes:x (np.ndarray): n-sized solution composed of binary variablesenergy_all (float): energy value obtained from QUBO-matrix of all termenergy_obj (float): energy value obtained from QUBO-matrix of objective termenergy_constraint (float): energy value obtained from QUBO-matrix of constraint termconstraint (bool): flag whether the solution satisfies the given constraint"""x: np.ndarrayenergy_all: float = 0energy_obj: float = 0energy_constraint: float = 0constraint: bool = True@classmethoddef energy(cls, qubo:np.ndarray, x: np.ndarray, const=0) -> float:"""Calculate the enrgy from the QUBO-matrix & solution xArgs:qubo (np.ndarray): n-by-n QUBO-matrixx (np.ndarray): n-sized solution composed of binary variablesconst (int, optional): _description_. Defaults to 0.Returns:float: Energy value."""return float(np.dot(np.dot(x, qubo), x) + const)@classmethoddef check_constraint(cls, qubo: np.ndarray, x: np.ndarray, const=0) -> bool:"""Check whether the solution satisfies the constraints.Args:qubo (np.ndarray): QUBO-model of the constraint term.x (np.ndarray): solution that you want to check.const (int, optional): constant of the constraint term. Defaults to 0.Returns:bool: Return True if the solution satisfy.Return False otherwise."""return True if cls.energy(qubo, x, const) == 0 else False
  1. subQUBO Hybrid Annealing Algorithm
# https://ieeexplore.ieee.org/document/9664360# <<< Line 2-4 >>>
# Initialize the Instance Pool
pool = []
for i in range(N_I):# ====================# 实验时改动此参数x = np.random.randint(0, 2, num_spin) # 生成随机解# ====================energy_obj = Solution.energy(qubo_obj, x)energy_constraint = Solution.energy(qubo=qubo_constraint, x=x, const=const_constraint)pool.append(Solution(x = x,energy_all = energy_obj + energy_constraint,energy_obj = energy_obj,energy_constraint = energy_constraint,constraint = Solution.check_constraint(qubo=qubo_constraint, x=x, const=const_constraint)))
ascending_order_idx = np.argsort(np.array(list(map(lambda sol: sol.energy_all, pool))))
pool = [pool[i] for i in ascending_order_idx]# <<< Line 5 >>>
# Find the best solution
ascending_order_idx = np.argsort(np.array(list(map(lambda sol: sol.energy_all, pool))))
x_best = pool[ascending_order_idx[0]]for _ in range(1): # <<< Line 6 >>># <<< Line 7-8 >>># Obtain a quasi-ground-state solution for every N_I solution instance by a classical QUBO solverfor solution_i in pool:# ====================# 实验时改动此参数x = np.random.randint(0, 2, num_spin) # 生成随机解# ====================# Update the solution infosolution_i.x = xenergy_obj = solution_i.energy(qubo_obj, x)energy_constraint = solution_i.energy(qubo_constraint, x, const_constraint)solution_i.energy_all = energy_obj + energy_constraintsolution_i.energy_obj = energy_objsolution_i.energy_constraint = energy_constraintsolution_i.constraint = solution_i.check_constraint(qubo=qubo_constraint, x=x, const=const_constraint)for i in range(N_E): # <<< Line 9 >>># <<< Line 10 >>># Select N_S solution instance randomly from the pooln_s_pool = random.sample(pool, N_S)# <<< Line 11-14 >>># Calculate variance of each spin x_i in N_S instance poolSolution.check_constraint(qubo_constraint, x, const_constraint)vars_of_x = np.array([sum(n_s_pool[k].x[j] for k in range(N_S)) - N_S/2 for j in range(num_spin)])# <<< Line 15 >>># Select a solution randomly from N_S solution instance pool as a tentative solutionsolution_tmp = random.choice(n_s_pool)# Extract a subQUBOextracted_spin_idx = np.argsort(vars_of_x)[:sub_qubo_size]non_extracted_spin_idx = np.argsort(vars_of_x)[sub_qubo_size:]subqubo_obj = np.array([[qubo_obj[j, k] for k in extracted_spin_idx] for j in extracted_spin_idx])subqubo_constraint = np.array([[qubo_constraint[j, k] for k in extracted_spin_idx] for j in extracted_spin_idx])for idx_i in range(sub_qubo_size):subqubo_obj[idx_i, idx_i] += sum(qubo_obj[idx_i, idx_j] * solution_tmp.x[idx_j] for idx_j in non_extracted_spin_idx)subqubo_constraint[idx_i, idx_i] += sum(qubo_constraint[idx_i, idx_j] * solution_tmp.x[idx_j] for idx_j in non_extracted_spin_idx)# <<< Line 16 >>># Optimize the subQUBO using an Ising machine# ====================# 实验时改动此参数x_sub = np.random.randint(0, 2, sub_qubo_size) # 生成随机解# ====================# Combine the quasi-ground-state solution from the subQUBO with the tentative solution X_t(solution_tmp)for idx, val in enumerate(extracted_spin_idx):solution_tmp.x[idx] = x_sub[idx]# <<< Line 17 >>># Add the solution into the poolpool.append(solution_tmp)# <<< Line 18 >>># Find the best soliutionascending_order_idx = np.argsort(np.array(list(map(lambda sol: sol.energy_all, pool))))x_best = pool[ascending_order_idx[0]]# <<< Line 19 >>># Arrange the N_I instance poolsorted_pool = [pool[i] for i in ascending_order_idx]pool = sorted_pool[:N_I]pool, x_best

总结

subQUBO思路很简单,希望大家可以看着代码,理解如果实现。这个算法已经被早稻田大学申请专利了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/616783.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[大模型] BlueLM-7B-Chat WebDemo 部署

BlueLM-7B-Chat WebDemo 部署 模型介绍 BlueLM-7B 是由 vivo AI 全球研究院自主研发的大规模预训练语言模型&#xff0c;参数规模为 70 亿。BlueLM-7B 在 C-Eval 和 CMMLU 上均取得领先结果&#xff0c;对比同尺寸开源模型中具有较强的竞争力(截止11月1号)。本次发布共包含 7…

MySQL-触发器:触发器概述、触发器的创建、查看删除触发器、 触发器的优缺点

触发器 触发器1. 触发器概述2. 触发器的创建2.1 创建触发器语法2.2 代码举例 3. 查看、删除触发器3.1 查看触发器3.2 删除触发器 4. 触发器的优缺点4.1 优点4.2 缺点4.3 注意点 注&#xff1a;此为笔者学习尚硅谷-宋红康MySQL的笔记&#xff0c;其中包含个人的笔记和理解&#…

亚远景科技-ASPICE 4.0-HWE硬件过程的范围 The Technical Scope of HW process

ASPICE 4.0中的HWE process是电气和电子硬件的技术范畴&#xff0c;涵盖了硬件工程中的需求分析、设计和验证活动&#xff0c;但不包括以下活动&#xff1a; 1. 系统级工程过程。既不包括机电一体MECHATRONIC&#xff0c;也不包括ECU特定电子控制单元的开发。 2. 硬件采购过程…

php:实现压缩文件上传、解压、文件更名、压缩包删除功能

效果图 1.上传文件 2.压缩包文件 3.itemno1文件 4.上传到系统路径\ItemNo 5.更名后的itemno1文件(命名&#xff1a;当天日期六位随机数) 代码 <form action"<?php echo htmlspecialchars($_SERVER[PHP_SELF], ENT_QUOTES, UTF-8); ?>" method"post…

Java面试篇9——并发编程

并发编程知识梳理 提示&#xff0c;此仅为面试&#xff0c;若想对线程有跟完整了解&#xff0c;请点击这里 提示&#xff1a;直接翻到最后面看面试真题&#xff0c;上面的为详解 面试考点 文档说明 在文档中对所有的面试题都进行了难易程度和出现频率的等级说明 星数越多代表…

康耐视visionpro-CogCaliperTool操作工具详细说明

CogCaliperTool]功能说明:卡尺工具,用于测量距离 ◆CogCaliperTool操作说明: ①.打开工具栏,双击或点击鼠标拖拽添加CogCaliperTool ②.添加输入图像,右键“链接到”或以连线拖拽的方式选择相应输入源 ③.拖动屏幕上的矩形框到需要测量的位置。卡尺的搜索框角度与边缘不…

C语言之typeof用法实例(九十二)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 优质专栏&#xff1a;多媒…

远程桌面防火墙是什么?

远程桌面防火墙&#xff0c;是一种针对远程桌面应用的安全防护工具。它可以在保证远程桌面连接的便利性和高效性的对网络连接进行安全性的保护&#xff0c;防止未经授权的访问和潜在的安全风险。 远程桌面防火墙的主要功能是对远程桌面连接进行监控和管理。它通过识别和验证连接…

mysql题目4

tj11&#xff1a; select count(*) 员工总人数 from tb_dept a join tb_employee b on a.deptnob.deptno where a.dname 市场部

【QT+QGIS跨平台编译】099:【QGIS_CORE跨平台编译】—【错误处理:qgscoordinatereferencesystem.cpp编译不通过】

点击查看专栏目录 文章目录 一、错误信息二、原因分析三、错误处理3.1 qgscoordinatereferencesystem_legacy.h3.2 qgscoordinatereferencesystem.cpp一、错误信息 macOS操作系统中,Release环境下编译qgscoordinatereferencesystem.cpp,出现错误,详细信息如下: 二

【大语言模型】应用:10分钟实现搜索引擎

本文利用20Newsgroup这个数据集作为Corpus(语料库)&#xff0c;用户可以通过搜索关键字来进行查询关联度最高的News&#xff0c;实现对文本的搜索引擎&#xff1a; 1. 导入数据集 from sklearn.datasets import fetch_20newsgroupsnewsgroups fetch_20newsgroups()print(fNu…

Matlab与ROS(1/2)---Simulink(二)

0. 简介 在上一章中我们详细介绍了ROS与Matlab链接的基础用法。这一章我们将来学习如何使用Matlab当中的Simulink来完成。Simulink对机器人操作系统(ROS)的支持使我们能够创建与ROS网络一起工作的Simulink模型。ROS是一个通信层&#xff0c;允许机器人系统的不同组件以消息的形…