数据可视化基础与应用-04-seaborn库人口普查分析--如何做人口年龄层结构金字塔

总结

本系列是数据可视化基础与应用的第04篇seaborn,是seaborn从入门到精通系列第3篇。本系列主要介绍基于seaborn实现数据可视化。

参考

参考:我分享了一个项目给你《seaborn篇人口普查分析–如何做人口年龄层结构金字塔》,快来看看吧

数据集地址
https://www.kesci.com/mw/project/5fde03b883e4460030a8dc3d/dataset

数据集介绍

2010年各地区分年龄,性别人口数据

背景描述
数据为中国2010年人口普查资料,包含2010年各地区分年龄、性别的人口,各地区分性别的户籍人口, 2010年(城市,乡村,镇)各地区分年龄、性别的人口

数据说明
1-7c 各地区分年龄、性别的人口(乡村).csv
1-7b 各地区分年龄、性别的人口(镇).csv
1-7a 各地区分年龄、性别的人口(城市).csv
1-3 各地区分性别的户籍人口.csv
各地区分年龄、性别的人口.csv
数据来源

中国2010年人口普查资料

问题描述
20年来出生男女比例变化?
男女找对象的合适年龄假设?初婚和再婚?
基于以上假设,哪个省份的男生以后找女朋友会越来越难?
结合结婚率、离婚率、民族、地域等信息,进一步猜测00后找女朋友的趋势变化

案例

#导入包
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
plt.style.use('fivethirtyeight')from warnings import filterwarnings
filterwarnings('ignore')
#读取各地区分年龄、性别的人口
pcount = pd.read_csv('/home/kesci/input/GENDER8810/各地区分年龄、性别的人口.csv',skiprows=2)
"""
2010年各地区分年龄,性别人口数据
背景描述数据为中国2010年人口普查资料,包含2010年各地区分年龄、性别的人口,各地区分性别的户籍人口, 2010年(城市,乡村,镇)各地区分年龄、性别的人口
数据说明1-7c 各地区分年龄、性别的人口(乡村).csv
1-7b 各地区分年龄、性别的人口(镇).csv
1-7a 各地区分年龄、性别的人口(城市).csv
1-3 各地区分性别的户籍人口.csv
各地区分年龄、性别的人口.csv
"""

1. 探索性分析并处理数据

pcount.head()

输出为:
在这里插入图片描述

pcount.info()

输出为:
在这里插入图片描述

1.1 删除多余的列
#删除所有值为na的列 
pcount=pcount.dropna(axis=1,how='all') 
1.2 处理表头
def rename(frame):for i in range(frame.shape[1]):frame.iloc[1,0]='地区'if frame.iloc[1,i]=='小计':frame.iloc[1,i]='小计'+ '_'+str(frame.iloc[0,i])elif frame.iloc[1,i]=='男':frame.iloc[1,i]='男' + '_' + str(frame.iloc[0,i-1])elif frame.iloc[1,i]=='女':frame.iloc[1,i]='女' + '_' + str(frame.iloc[0,i-2])rename(pcount)
pcount.head()

输出为:
在这里插入图片描述

1.3 透视数据
pcount.columns = pcount.iloc[1,]
pcount.columns

输出为:
在这里插入图片描述

pcount = pcount.iloc[2:,:]
pcount

输出为:
在这里插入图片描述

pcounts = pcount.set_index("地区").stack().reset_index()
pcounts

输出为:
在这里插入图片描述

pcounts.columns = ['地区','类别','统计人数']
pcounts

输出为:
在这里插入图片描述

1.4 处理空格(数据量大的话不建议这么做)
def replace_r(frame):for i in range(frame.shape[0]):frame.iloc[i,0] = frame.iloc[i,0].replace(" ",'')frame.iloc[i,1] = frame.iloc[i,1].replace(" ",'')replace_r(pcounts)
pcounts

输出为:
在这里插入图片描述

1.5 增加统计列
pcounts['年龄段'] = pcounts['类别'].str.split('_').str[-1]
pcounts['性别'] = pcounts['类别'].str.split('_').str[0]
#将统计人数转换为数值
pcounts['统计人数']=pcounts['统计人数'].astype('int')

2. 可视化部分

2.1 我国人口总数
plt.figure(1,figsize=(16,6))
plt.subplot(1,2,1)
sns.barplot(y=['全国人口总数','男性人口总数','女性人口总数'],x=[1337376754,687562046,649814708],color='CadetBlue')
plt.title("全国人口总数",loc='left')
plt.xticks(fontsize=12)
plt.yticks(fontsize=13)plt.subplot(1,2,2)
patches,l_text,p_text=plt.pie([687562046,649814708],labels=['男性','女性'],autopct='%.2f%%',colors=['CadetBlue','DarkSalmon'],explode=[0,0.05],startangle=90)
plt.title('不同性别占全国人口总数的百分比')
plt.axis('equal')
plt.show()

输出为:
在这里插入图片描述

2.1 人口年龄结构金字塔(左边女右边男)
result = pcounts[(pcounts['性别'].isin(['男','女']))&(pcounts['地区']=='全国')&(pcounts['年龄段']!='合计')]
result

输出为:
在这里插入图片描述

result['人口占比'] =( result['统计人数']/result['统计人数'].sum()*100).round(2)
result

输出为:
在这里插入图片描述

# 女性占比
-result[result['性别']=='女']['人口占比'].values

输出为:
在这里插入图片描述

plt.figure(figsize=(12,8))bar_plot = sns.barplot(y = result['年龄段'].unique(), x = -result[result['性别']=='女']['人口占比'].values, color = "DarkSalmon", data = result,order = result['年龄段'].unique()[::-1],)
bar_plot = sns.barplot(y = result['年龄段'].unique(), x = result[result['性别']=='男']['人口占比'].values, color = "CadetBlue",data = result,order = result['年龄段'].unique()[::-1],)plt.xticks([-5,-3,-1,0,1,3,5],[5,3,1,0,1,3,5])
# plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']
plt.rcParams['axes.unicode_minus'] = True
bar_plot.set(xlabel="人口占比(%)", ylabel="年龄层", title = "2010中国人口普查年龄结构金字塔")
plt.show()

输出为:
在这里插入图片描述

2.2 差异
data = {'index': result['年龄段'].unique(),'男': result[result['性别']=='男']['人口占比'].values,'女': result[result['性别']=='女']['人口占比'].values,}
Data = pd.DataFrame(data)
Data['差异']=Data['男']-Data['女']
plt.figure(1,figsize=(12,8))
sns.lineplot(x=Data['index'],y=Data['差异'],color='DarkSalmon')
plt.xlabel("年龄层")
plt.ylabel("人口占比(%)")
plt.title("各年龄层的 男 VS 女(占比)的差异")
plt.xticks(rotation=35)
plt.show()

输出为:
在这里插入图片描述

2.3 北京、上海、广东地区的人口年龄结构金字塔(左边女右边男)
plt.figure(1,figsize=(18,16))
n = 0
for x in ['北京','上海','广东']:result = pcounts[(pcounts['性别'].isin(['男','女']))&(pcounts['地区'] == x )&(pcounts['年龄段']!='合计')]result['人口占比'] =( result['统计人数']/result['统计人数'].sum()*100).round(2)n +=1plt.subplot(2,3,n)bar_plot = sns.barplot(y = result['年龄段'].unique(), x = -result[result['性别']=='女']['人口占比'].values, color = "DarkSalmon", data = result,order = result['年龄段'].unique()[::-1],)bar_plot = sns.barplot(y = result['年龄段'].unique(), x = result[result['性别']=='男']['人口占比'].values, color = "CadetBlue",data = result,order = result['年龄段'].unique()[::-1],)plt.xticks([-7,-5,-3,-1,0,1,3,5,7],[7,5,3,1,0,1,3,5,7])plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']plt.rcParams['axes.unicode_minus'] = Truebar_plot.set(xlabel="人口占比(%)", ylabel="年龄层", title = x )plt.ylabel('')
plt.show()   

输出为:
在这里插入图片描述

上图这三个地区还是比较突出的但不容易看出男女差异,我们再来一个性别的对比图

plt.figure(1,figsize=(18,16))
n = 0
for x in ['北京','上海','广东']:result = pcounts[(pcounts['性别'].isin(['男','女']))&(pcounts['地区'] == x )&(pcounts['年龄段']!='合计')]n +=1plt.subplot(2,3,n)sns.barplot(x='统计人数',y='年龄段',hue='性别',data=result,palette=['CadetBlue','DarkSalmon'],order=result['年龄段'].unique()[::-1])plt.title(x)plt.xticks(rotation=35)plt.ylabel('')
plt.show()

输出为:
在这里插入图片描述

不难发现这三个地区的男女比例失衡,在中青年这个年龄段较为严重

2.4 人口分布地图
result1 = pcounts[(pcounts['性别']=='小计')&(pcounts['地区']!='全国')&(pcounts['年龄段']!='合计')]
result1

输出为:
在这里插入图片描述

result2 = result1.groupby('地区')['统计人数'].sum().reset_index(name='统计人数')
result2

输出为:
在这里插入图片描述

# pip install pyecharts
# from pyecharts.globals import CurrentConfig,OnlineHostType
# CurrentConfig.ONLINE_HOST = OnlineHostType.NOTEBOOK_HOST
from pyecharts.charts import Map
from pyecharts import options as opts
x_data = result2['地区'].tolist()
y_data = result2['统计人数'].tolist()
x_data

输出为:
在这里插入图片描述

name_translate = {"宁夏回族自治区":"宁夏","河南省":"河南","北京市":"北京","河北省":"河北","辽宁省":"辽宁","江西省":"江西",
"上海市":"上海","安徽省": "安徽","江苏省":"江苏","湖南省":"湖南","浙江省":"浙江","海南省":"海南",
"广东省":"广东","湖北省":"湖北", "黑龙江省": "黑龙江","陕西省":"陕西","四川省":"四川","内蒙古自治区":"内蒙古",
"重庆市":"重庆","广西壮族自治区":"广西","云南省":"云南","贵州省":"贵州","吉林省":"吉林","山西省":"山西",
"山东省":"山东","福建省":"福建","青海省":"青海","天津市":"天津","新疆维吾尔自治区":"新疆","西藏自治区":"西藏",
"甘肃省":"甘肃","大连市":"大连", "东莞市":"东莞","宁波市":"宁波","青岛市":"青岛","厦门市":"厦门","台湾省":" ","澳门特别行政区":" ",
"香港特别行政区":" ","南海诸岛":" "}
# 地图
map1 = Map()
map1.add("", [list(z) for z in zip(x_data, y_data)],"china",name_map=name_translate) 
map1.set_series_opts(label_opts=opts.LabelOpts(is_show=True))
map1.set_global_opts(title_opts=opts.TitleOpts(title='全国各地区人口分布'),
visualmap_opts=opts.VisualMapOpts( max_=result2['统计人数'].max(),
min_ =result2['统计人数'].min(),is_piecewise=False))
map1.render_notebook() 

输出为:
在这里插入图片描述

2010年的人口普查数据显示:广东省、山东省、河南省、四川省、江苏省 是总人口数前 5 的地区

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/619275.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于飞浆paddle的Mv3驾驶员行为识别

“其实一开始并没有想学深度学习” ! pip install --upgrade pip ! pip install paddlex ! pip install --user --upgrade pyarrow11.0.0 # 配置环境 train_list格式(test同理):图片路径\t标签 newLabels格式:标签 训练代码 impo…

HarmonyOS实战开发-自定义通知角标、如何设定应用的桌面图标角标的功能。

介绍 本示例主要展示了设定应用的桌面图标角标的功能,使用ohos.notificationManager 接口,进行桌面角标的设置,通知的发送,获取等。 效果预览 使用说明 在使用本应用时,需安装并启动仿桌面应用;在主界面…

绝地求生:杜卡迪来了,这些摩托车技巧不学一下吗?

摩托车在远古版本和现在完全不一样,虽然容易翻车造就了一批玩家“摩托杀手”的外号,但是速度可比今天快多了。 后来在蓝洞的削弱了其加速度,虽然资料上写着最高时速155km/h,但是平时游戏中一般只能拉到110~120km/h。这里写一点摩托…

Java多线程的线程状态和线程池参数

一、线程状态 当线程被创建并启动以后,它既不是一启动就进入了执行状态,也不是一直处于执行状态。线程对象在不同的时期有不同的状态。Java中的线程状态被定义在了java.lang.Thread.State枚举类中,State枚举类的源码如下: publi…

NODE MCU (ESP8285-ESP8266)用Arduino lDE 2.3.2烧录系统后串口监控不打印问题

问题: Arduino lDE 2.3.2,集合DOIT ESP-Mx DevKit板子,烧录代码后,串口监视器 打印不出来调试数据 分析: Arduino lDE 2.3.2工具提示,不支持调试 板载flash按钮无需按下,即可烧录系统,由于烧录和调试共用串口,所以怀疑是Arduino lDE 2.3.2在烧录时设置了串口的配置…

文献阅读:LESS: Selecting Influential Data for Targeted Instruction Tuning

文献阅读:LESS: Selecting Influential Data for Targeted Instruction Tuning 1. 文章简介2. 方法介绍 1. Overview2. 原理说明 1. SGD上的定义2. Adam上的定义 3. 具体实现 1. Overview1. LoRA使用2. 数据选择3. LESS-T 3. 实验考察 & 结论 1. 实验设计2. 主…

读《被讨厌的勇气》

大家好,我是老三,最近读了《被讨厌的勇气:“自我启发之父”阿德勒的哲学课》,读书笔记整理如下。 这是一本阿德勒心理学的入门科普,先来了解一下阿德勒其人,阿德勒曾是大名鼎鼎的弗洛伊德的门徒&#xff0c…

Python学习笔记20 - 模块

什么叫模块 自定义模块 Python中的包 Python中常用的内置模块 第三方模块的安装与使用

基于SpringBoot+Mybatis框架的私人影院预约系统(附源码,包含数据库文件)

基于SpringBootMybatis框架的私人影院预约系统,附源码,包含数据库文件。 非常完整的一个项目,希望能对大家有帮助哈。 本系统的完整源码以及数据库文件都在文章结尾处,大家自行获取即可。 项目简介 该项目设计了基于SpringBoo…

国内开通gpt会员方法

ChatGPT镜像 今天在知乎看到一个问题:“平民不参与内测的话没有账号还有机会使用ChatGPT吗?” 从去年GPT大火到现在,关于GPT的消息铺天盖地,真要有心想要去用,途径很多,别的不说,国内GPT的镜像…

给自己的机器人部件安装单目摄像头并实现gazebo仿真功能

手术执行器添加摄像头 手术执行器文件夹surgical_new内容展示如何添加单目摄像头下载现成的机器人环境文件启动仿真环境 手术执行器文件夹surgical_new内容展示 进入src文件夹下选择进入vision_obliquity文件夹 选择launch 有两个可用gazebo中rviz展示的launch文件&#xff0…

# 达梦sql查询 Sql 优化

达梦sql查询 Sql 优化 文章目录 达梦sql查询 Sql 优化注意点测试数据单表查询 Sort 语句优化优化过程 多表关联SORT 优化函数索引的使用 注意点 关于优化过程中工具的选用,推荐使用自带的DM Manage,其它工具在查看执行计划等时候不明确在执行计划中命中…