Rust - 所有权

所有的程序都必须和计算机内存打交道,如何从内存中申请空间来存放程序的运行内容,如何在不需要的时候释放这些空间,成了重中之重,也是所有编程语言设计的难点之一。在计算机语言不断演变过程中,出现了三种流派:

  • 垃圾回收机制(GC),在程序运行时不断寻找不再使用的内存,典型代表:Java、Go
  • 手动管理内存的分配和释放, 在程序中,通过函数调用的方式来申请和释放内存,典型代表:C++
  • 通过所有权来管理内存,编译器在编译时会根据一系列规则进行检查

其中 Rust 选择了第三种,最妙的是,这种检查只发生在编译期,因此对于程序运行期,不会有任何性能上的损失。

由于所有权是一个新概念,无需垃圾回收即可保障内存安全,因此理解 Rust 中所有权如何工作是十分重要的。本章,我们将讲到所有权以及相关功能都将通过字符串来引导进行讲解。

(一)栈和堆

栈和堆是编程语言最核心的数据结构,但是在很多语言中,你并不需要深入了解栈与堆。 但对于 Rust 这样的系统编程语言,值是位于栈上还是堆上非常重要, 因为这会影响程序的行为和性能。

栈和堆的核心目标就是为程序在运行时提供可供使用的内存空间。

栈按照顺序存储值并以相反顺序取出值,这也被称作后进先出

想象一下一叠盘子:当增加更多盘子时,把它们放在盘子堆的顶部,当需要盘子时,再从顶部拿走。不能从中间也不能从底部增加或拿走盘子,这就是栈的原理。

增加数据的操作叫做进栈,移出数据的操作则叫做出栈

要想完成上述的实现方式,则要求栈中的所有数据都必须占用已知且固定大小的内存空间,假设数据大小是未知的,那么在取出数据时,你将无法取到你想要的数据。

与栈不同,对于大小未知或者可能变化的数据,我们需要将它存储在堆上。

当向堆上放入数据时,需要请求一定大小的内存空间。操作系统在堆的某处找到一块足够大的空位,把它标记为已使用,并返回一个表示该位置地址的指针, 该过程被称为在堆上分配内存,有时简称为 “分配”(allocating)。

接着,该指针会被推入中,因为指针的大小是已知且固定的,在后续使用过程中,你将通过栈中的指针,来获取数据在堆上的实际内存位置,进而访问该数据。

由上可知,堆是一种缺乏组织的数据结构。想象一下去餐馆就座吃饭: 进入餐馆,告知服务员有几个人,然后服务员找到一个够大的空桌子(堆上分配的内存空间)并领你们过去。如果有人来迟了,他们也可以通过桌号(栈上的指针)来找到你们坐在哪。

性能区别

在栈上分配内存比在堆上分配内存要快,因为入栈时操作系统无需进行函数调用(或更慢的系统调用)来分配新的空间,只需要将新数据放入栈顶即可。

相比之下,在堆上分配内存则需要更多的工作,这是因为操作系统必须首先找到一块足够存放数据的内存空间,接着做一些记录为下一次分配做准备,如果当前进程分配的内存页不足时,还需要进行系统调用来申请更多内存。 因此,处理器在栈上分配数据会比在堆上分配数据更加高效。

所有权与堆栈

当你的代码调用一个函数时,传递给函数的参数(包括可能指向堆上数据的指针和函数的局部变量)依次被压入栈中,当函数调用结束时,这些值将被从栈中按照相反的顺序依次移除。

因为堆上的数据缺乏组织,因此跟踪这些数据何时分配和释放是非常重要的,否则堆上的数据将产生内存泄漏 —— 这些数据将永远无法被回收。这就是 Rust 所有权系统为我们提供的强大保障,也是“所有权”存在的原因。

对于其他很多编程语言,你确实无需理解堆栈的原理,但是在 Rust 中,明白堆栈的原理,对于我们理解所有权的工作原理会有很大的帮助

(二)所有权原则

理解了堆栈,接下来让我们看一下所有权的规则。当我们通过举例说明时,请谨记这些规则:

  1. Rust 中每一个值都被一个变量所拥有,该变量被称为值的所有者
  2. 一个值同时只能一个变量所拥有,或者说一个值只能拥有一个所有者
  3. 当所有者(变量)离开作用域范围时,这个值将被丢弃(drop)
变量的作用域

“作用域”是一个变量在程序中有效的范围, 假如有这样一个变量:

let s = "hello";

变量 s 绑定到了一个字符串字面值,该字符串字面值是硬编码到程序代码中的。s 变量从声明的点开始直到当前作用域的结束都是有效的:

fn func{               // s 在这里无效,它尚未声明let s = "hello";   // 从此处起,s 是有效的// 使用 s...
}                      // 此作用域已结束,s不再有效

简而言之,s 从创建开始就有效,然后有效期持续到它离开作用域为止,可以看出,就作用域来说,Rust 语言跟其他编程语言没有区别。

为什么是String类型

我们已经见过字符串字面值 let s =“hello”,s 是被硬编码进程序里的字符串值(类型为 &str )。字符串字面值是很方便的,但是它并不适用于所有场景。原因有二:

  • 字符串字面值是不可变的,因为被硬编码到程序代码中
  • 并非所有字符串的值都能在编写代码时得知

例如,字符串是需要程序运行时,通过用户动态输入然后存储在内存中的,这种情况,字符串字面值就完全无用武之地。 为此,Rust 为我们提供动态字符串类型: String,该类型被分配到堆上,因此可以动态伸缩,也就能存储在编译时大小未知的文本。

从这里开始,我们要通过 字符串 来引导讲解所有权的相关知识。

那么为什么是字符串?

因为String类型是存储在堆上的数据,通过字符串来探索 Rust 可以知道它是在何时清理数据的。而前面介绍的标量类型都是已知大小的,可以存储在栈中,并且当离开作用域时会被移出栈。

创建一个String类型的值:

例子:使用 from 函数来基于字符串字面值创建出 String 类型

let s = String::from("hello");

:: 是一种调用操作符,这里表示调用 String 模块中的 from 方法,由于 String 类型存储在堆上,因此它是动态的。基于堆的特性,我们可以进行修改:

let mut s = String::from("hello");s.push_str(", world!"); // push_str() 在字符串后追加字面值println!("{}", s); // 将打印 hello, world!
变量绑定背后的数据交互:关于所有权的转移

先来看一段代码:

let x = 5;
let y = x;

这段代码并没有发生所有权的转移,原因很简单: 代码首先将 5 绑定到变量 x,接着拷贝 x 的值赋给 y,最终 x 和 y 都等于 5。

因为整数是 Rust 基本数据类型,是固定大小的简单值,因此这两个值都是通过自动拷贝的方式来赋值的,都被存在栈中,完全无需在堆上分配内存。此时,在栈中就会存在两个“5”,一个属于x,一个属于y。

整个过程中的赋值都是通过值拷贝的方式完成(发生在栈中),因此并不需要所有权转移。

可能有同学会有疑问:这种拷贝不消耗性能吗?实际上,这种栈上的数据足够简单,而且拷贝非常非常快,只需要复制一个整数大小(i32,4 个字节)的内存即可,因此在这种情况下,拷贝的速度远比在堆上创建内存来得快的多。实际上,Rust 的基本数据类型(标量类型) 都是通过自动拷贝的方式来赋值的,就像上面代码一样。

再来看一个 String 版本:

let s1 = String::from("hello");
let s2 = s1;

这看起来与上面的代码非常类似,所以我们可能会假设它们的运行方式也是类似的:也就是说,第二行可能会生成一个 s1 的拷贝并绑定到 s2 上。不过,事实上并不完全是这样。之前也提到了,对于基本类型(存储在栈上),Rust 会自动拷贝,但是 String 不是基本类型,而且是存储在堆上的,因此不能自动拷贝。

实际上, String 类型是一个复杂类型,由存储在中的堆指针字符串长度字符串容量共同组成,其中堆指针是最重要的,它指向了真实存储字符串内容的堆内存,至于长度和容量,如果你有其他语言的经验,这里就很好理解:容量是堆内存分配空间的大小,长度是目前已经使用的大小。

总之 String 类型指向了一个堆上的空间,这里存储着它的真实数据,下面对上面代码中的 let s2 = s1 分成两种情况讨论:

  1. 拷贝 String 和存储在堆上的字节数组 如果该语句是拷贝所有数据(深拷贝),那么无论是 String 本身还是底层的堆上数据,都会被全部拷贝,这对于性能而言会造成非常大的影响
  2. 只拷贝 String 本身 这样的拷贝非常快,因为在 64 位机器上就拷贝了 8字节的指针、8字节的长度、8字节的容量,总计 24 字节,但是带来了新的问题,还记得我们之前提到的所有权规则吧?其中有一条就是:一个值只允许有一个所有者,而现在这个值(堆上的真实字符串数据)有了两个所有者:s1 和 s2。

好吧,就假定一个值可以拥有两个所有者,会发生什么呢?

当变量离开作用域后,Rust 会自动调用 drop 函数并清理变量的堆内存。不过由于两个 String 变量指向了同一位置。这就有了一个问题:当 s1 和 s2 离开作用域,它们都会尝试释放相同的内存。这是一个叫做 二次释放(double free) 的错误,也是之前提到过的内存安全性 BUG 之一。两次释放(相同)内存会导致内存污染,它可能会导致潜在的安全漏洞。

因此,Rust 这样解决问题:当 s1 被赋予 s2 后,Rust 认为 s1 不再有效,因此也无需在 s1 离开作用域后 drop 任何东西,这就是把所有权从 s1 转移给了 s2,s1 在被赋予 s2 后就马上失效了

再来看看,在所有权转移后再来使用旧的所有者,会发生什么:

let s1 = String::from("hello");
let s2 = s1;println!("{}, world!", s1);

由于 Rust 禁止你使用无效的引用,你会看到以下的错误:

borrow of moved value: `s1`
//该变量已被移除了所有权:“S1”

现在再回头看看之前的规则,相信可以有更深刻的理解:

  • Rust 中每一个值都被一个变量所拥有,该变量被称为值的所有者
  • 一个值同时只能被一个变量所拥有,或者说一个值只能拥有一个所有者
  • 当所有者(变量)离开作用域范围时,这个值将被丢弃(drop)

如果你在其他语言中听说过术语 浅拷贝(shallow copy)深拷贝(deep copy),那么拷贝指针、长度和容量而不拷贝数据听起来就像浅拷贝,但是又因为 Rust 同时使第一个变量 s1 无效了,因此这个操作被称为 移动(move),而不是浅拷贝。

上面的例子可以解读为 s1 被移动到了 s2 中。那么具体发生了什么,用一张图简单说明(灰色表示所有权被移除):
image.png
再来看一段代码:

fn main() {let x: &str = "hello, world";let y = x;println!("{},{}",x,y);
}

这段代码会不会报错?如果参考之前的 String 所有权转移的例子,那这段代码也应该报错才是,但是实际上呢?

这段代码和之前的 String 例子有一个本质上的区别:在 String 的例子中 s1 持有了通过String::from(“hello”) 创建的值的所有权,而这个例子中,x 只是引用了存储在二进制可执行文件( binary )中的字符串 “hello, world”,并没有持有所有权。

因此 let y = x 中,仅仅是对该引用进行了拷贝,此时 y 和 x 都引用了同一个字符串。如果还不理解也没关系,下一篇文章会对 “引用与借用” 进行整理说明。

(三)深拷贝与浅拷贝

深拷贝(又称克隆)

首先,Rust 永远也不会自动创建数据的 “深拷贝”。因此,任何自动的复制都不是深拷贝,可以被认为对运行时性能影响较小。

如果我们确实需要深度复制 String 中堆上的数据,而不仅仅是栈上的数据,可以使用一个叫做 clone 的方法。

let s1 = String::from("hello");
let s2 = s1.clone();println!("s1 = {}, s2 = {}", s1, s2);
//结果:s1 = hello, s2 = hello

这段代码能够正常运行,说明 s2 确实完整的复制了 s1 的数据。

如果代码性能无关紧要,例如初始化程序时或者在某段时间只会执行寥寥数次时,你可以使用 clone 来简化编程。但是对于执行较为频繁的代码(热点路径),使用 clone 会极大的降低程序性能,需要小心使用!

浅拷贝(又称拷贝)

浅拷贝只发生在栈上,因此性能很高,在日常编程中,浅拷贝无处不在。

再回到之前看过的例子:

let x = 5;
let y = x;println!("x = {}, y = {}", x, y);
//结果:x = 5, y = 5

但这段代码似乎与我们刚刚学到的内容相矛盾:没有调用 clone,不过依然实现了类似深拷贝的效果 —— 没有报所有权的错误。

原因是像整型这样的基本类型在编译时是已知大小的,会被存储在栈上,所以拷贝其实际的值是快速的。这意味着没有理由在创建变量 y 后使 x 无效(x、y 都仍然有效)。换句话说,这里没有深浅拷贝的区别,因此这里调用 clone 并不会与通常的浅拷贝有什么不同,我们可以不用管它(可以理解成在栈上做了深拷贝)。

Rust 有一个叫做 Copy 的特征,可以用在类似整型这样在栈中存储的类型。如果一个类型拥有 Copy 特征,一个旧的变量在被赋值给其他变量后仍然可用,也就是赋值的过程即是拷贝的过程。

那么哪些类型实现了 Copy 呢?你可以查看给定类型的文档来确认,不过作为一个通用的规则,任何一组简单标量值的组合都可以实现 Copy,任何不需要分配内存或某种形式资源的类型都可以实现 Copy 。如下是一些 Copy 的类型:

  • 所有整数类型,比如 u32。
  • 布尔类型,bool,它的值是 true 和 false。
  • 所有浮点数类型,比如 f64。
  • 字符类型,char。
  • 元组,当且仅当其包含的类型也都实现 Copy 的时候。比如,(i32, i32) 实现了 Copy,但 (i32, String) 就没有。

(四)所有权与函数

将值传递给函数,一样会发生 移动 或者 复制,就跟 let 语句一样,下面的代码展示了所有权、作用域的规则:

fn main() {let s = String::from("hello");  // s 进入作用域takes_ownership(s);             // s 的值移动到函数里 ...// ... 所以到这里不再有效let x = 5;                      // x 进入作用域makes_copy(x);                  // x 应该移动函数里,// 但 i32 是 Copy 的,所以在后面可继续使用 x// ... 继续使用x} // 这里, x 先移出了作用域,然后是 s。但因为 s 的值已被移走,
// 所以不会有特殊操作fn takes_ownership(some_string: String) { // some_string 进入作用域println!("{}", some_string);
} // 这里,some_string 移出作用域并调用 `drop` 方法。占用的内存被释放fn makes_copy(some_integer: i32) { // some_integer 进入作用域println!("{}", some_integer);
} // 这里,some_integer 移出作用域。不会有特殊操作

我们尝试在 takes_ownership 之后,再使用 s,可以看到报错。例如添加一行 println!(“在move进函数后继续使用s: {}”,s);。

报错信息如下:

borrow of moved value: `s`
//s的所有权已经被移除

同样的,函数返回值也有所有权,例如:

fn main() {let s1 = gives_ownership();         // gives_ownership 将返回值移给 s1let s2 = String::from("hello");     // s2 进入作用域let s3 = takes_and_gives_back(s2);  // s2 被移动到takes_and_gives_back 中,它也将返回值移给 s3} // 这里, s3 移出作用域并被丢弃。s2 也移出作用域,但已被移走,所以什么也不会发生。s1 移出作用域并被丢弃fn gives_ownership() -> String {             // gives_ownership 将返回值移动给调用它的函数let some_string = String::from("hello"); // some_string 进入作用域.some_string                              // 返回 some_string 并移出给调用的函数
}// takes_and_gives_back 将传入字符串并返回该值
fn takes_and_gives_back(a_string: String) -> String { // a_string 进入作用域a_string  // 返回 a_string 并移出给调用的函数
}

变量的所有权总是遵循相同的模式:将值赋给另一个变量时移动它。当持有堆中数据值的变量离开作用域时,其值将通过 drop 被清理掉,除非数据被移动为另一个变量所有。

所有权很强大,避免了内存的不安全性,但是也带来了一个新麻烦: 总是把一个值传来传去来使用它。 传入一个函数,很可能还要从该函数传出去,结果就是语言表达变得非常啰嗦,幸运的是,Rust 对此提供了一个不用获取所有权就可以使用值的功能,叫做引用。
(下一篇文章会对引用进行整理说明)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/619826.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

医疗大模型,巨头们的新赛场

配图来自Canva可画 说起近两年最热门的话题,那一定非大模型莫属了。众所周知,伴随着ChatGPT的强势出圈,全球范围内掀起了一波人工智能热潮,国内外的诸多企业都开足马力,推出了自己的大模型产品。而AI大模型产品的不断…

基于Vue的低代码可拔插自定义组件

背景说明 在低代码初期,各个厂商的前端低代码搭建框架基本集中在JQuery、Vue、React 等。但在低代码的实施阶段,对于前端的展示,都遇到了同一个挑战:部分场景下需要根据自身业务来定制表单组件(如表单组件UI和业务逻辑…

虚拟机下CentOS7开启SSH连接

虚拟机下CentOS7开启SSH连接 自己在VMware中装了CentOS 6.3,然后主机(或者说xshell)与里面的虚拟机连不通,刚学习,一头雾水,查了半天,也不知道怎么弄。 在虚拟机(Vmware Workstatio…

前端小技巧之轮播图

文章目录 功能htmlcssjavaScript图片 设置了一点小难度,不理解的话,是不能套用的哦!!! (下方的圆圈与图片数量不统一,而且宽度是固定的) 下次写一些直接套用的,不整这些麻…

第二证券|A股突发!外资大动作!

A股走出独立行情! 今天,日本、韩国股市大幅下挫,但A股早盘并未遭到太多影响,走出了强势拉升的独立行情。创业板指涨超2%,沪指、深成指涨超1%,富时我国A50指数期货直线拉升,涨幅超越2%。 尽管盘…

Qt for Android 配置 gradle

配置 gradle 版本 在 Qt Android 编译时需要配置对应的 gradle 版本才能正确编译。 创建模板 创建 android 模板 修改配置文件 进入 Android 目录 android 模板目录 2. 修改 gradle.properties 文件 org.gradle.jvmargs-Xmx2048m 改为 org.gradle.jvmargs-Xmx1024m3. 修…

YesPMP众包平台 | 活动有礼,现金奖励点击领取!

YesPMP众包平台在线发福利啦,4月16日活动火热开启,现金奖励等你来领,最高可领千元,赶快参与将奖励收入囊中,一起来了解活动细节吧! 一、活动内容: 活动一:【项目征集令】活动&…

ubuntu 20.04 更新显卡驱动

1. 问题描述 $ watch -n 1 nvidia-smi画面不动 而且运行 pytorch 代码时出现问题: UserWarning: CUDA initialization: The NVIDIA driver on your system is too old (found version 11070). Please update your GPU driver by downloading and installing a new…

tsconfig.json文件常用配置

最近在学ts,因为tsconfig的配置实在太多啦,所以写此文章用作记录,也作分享 作用? tsconfig.jsono是ts编译器的配置文件,ts编译器可以根据它的信息来对代码进行编译 初始化一个tsconfig文件 tsc -init配置参数解释 …

【Java框架】Mybatis教程(一)——环境搭建及基本CRUD操作

目录 持久化与ORMORM(Object Relational Mapping)ORM解决方案包含下面四个部分 MyBatis简介特点MyBatis框架优缺点优点缺点 搭建MyBatis开发环境步骤1. 创建Maven工程,导入MyBatis依赖的组件2. 编写MyBatis核心配置文件(mybatis-config.xml)示…

UE5不打包启用像素流 ubuntu22.04

首先查找引擎中像素流的位置: zkzk-ubuntu2023:/media/zk/Data/Linux_Unreal_Engine_5.3.2$ sudo find ./ -name get_ps_servers.sh [sudo] zk 的密码: ./Engine/Plugins/Media/PixelStreaming/Resources/WebServers/get_ps_servers.sh然后在指定路径中…

matlab使用教程(44)—绘制带标记的二维曲线图

在线图中添加标记是区分多个线条或突出显示特定数据点的有用方法。使用下面的一种方式添加标记: • 在线条设定输入参数(例如 plot(x,y,-s) )中包含标记符号。 • 将 Marker 属性指定为一个名称-值对组,例如 plot(x,y,Marker,s…