DrugBAN:基于双线性注意力网络进行药物-靶点结合预测。

DrugBan:一种可解释的双线性注意力网络进行药物-靶点结合预测。


提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档

文章目录

  • DrugBan:一种可解释的双线性注意力网络进行药物-靶点结合预测。
  • 前言
  • 一、模型框架
      • 1. 编码器
      • 2. 双线性注意力网络(BAN)
      • 3. 对抗性的领域适应网络(CDAN)
  • 二、结果
      • 1. 模型性能
      • 2. 消融实验
      • 3. 模型解释性
  • 总结


前言

预测药物-靶点相互作用(DTI)时药物发现中的关键环节,近年来一些深度学习方法在该环节中显示了广泛的应用前景,但目前仍然存在两个关键问题:
1. 如何明确地建模和学习药物和靶标之间的局部相互作用,以便更好地预测。
2. 如何提升药物-靶标对的预测的泛化能力。

针对这两个问题,作者提出了一个深度双线性关注网络(drug- BAN)框架以学习药物和靶标之间的局部相互作用,并使用领域自适应模块应用到训练集分布以外地数据中(即未知的药物-靶标结构对)。


一、模型框架

在这里插入图片描述

模型由三部分组成:

1. 编码器

基于基于GCN编码分子smiles,CNN编码蛋白序列。

2. 双线性注意力网络(BAN)

为了更好的学习蛋白和配体之间的局部相互作用特征,没有将分子和蛋白特征直接拼合以表示分子-蛋白对。而是加入了一个attenion去生成一个新的集合特征I,之后再进行一层attention的套娃。与直接采用单层attention相比,双线性注意力网络能够更好的去学习两个子特征之间的联系,本质上是一种多模态模型。

3. 对抗性的领域适应网络(CDAN)

为了增强模型的泛化能力,作者在BAN之后接入了一个CDAN。该模块属于迁移学习的一种方式,其核心思维和生成对抗网络很像。具体表现为,当我们已经在source数据集上训练完成了BAN之后,如何去提升BAN模型的泛化能力的让其能够将soutce数据集中的知识应用数据分布有所不同的target数据集上。首先,两个数据集都会通过BAN网络得到特征f,之后经过分类器去进行鉴别。 BAN和这个分类器之间进行了一场”猫捉老鼠“的竞赛,分类器目标是识别出target和source,而BAN网络则是为了蒙混过关。在这个过程中,BAN也就逐渐将source上所学到的知识传到了target上以用于”伪装“。 此外,CADA 还引入了一个条件变量,也就是上图中的g,表示不同的任务场景。在本论文中即蛋白-配体结构对的类别,让BAN能够根据不同的类别以调整权重,更好地适应目标域的任务。

二、结果

1. 模型性能

作者一共在两个数据集上进行了相关的性能测试,BindingDB和BioSNAP。并分了两个任务场景,其一是随机批分或据集,第二则是先将数据进行相似性聚类后再批分数据集。前者的性能如下:
在这里插入图片描述
后者作者采用了ECFP4指纹和氨基酸序列进行了聚类,并随机抽取了百分之60的类作为sorce训练集,剩下的数据中的百分之80做验证集(target数据集),百分之20做最终的测试集合, 模型表现如下:
在这里插入图片描述
可以看到drug-ban呈现了SOTA性能。

2. 消融实验

在这里插入图片描述
CDAN的引入能够显著替身模型的泛化能力。

3. 模型解释性

在这里插入图片描述
根据模型给出的attention分数丢小分子进行着色,可以发现准确了发现了关键的原子位点。这些原子是配体与蛋白复合物稳定的关键。(但就展示了三个,这个解释性就见仁见智了)


总结

作者提出了 DrugBAN,一个用于 DTI 预测的端到端双线性注意深度学习框架。该模型具备如下三点优势:

  1. 作者将 CDAN整合到建模过程中,增强了模型的泛化能力。
  2. 通过将注意力权重映射到蛋白质子序列和药物化合物原子上,作者的模型可以为解释相互作用的性质提供生物学见解。

个人认为阻碍其性能进一步增长的原因:

  1. 蛋白和分子的表征仅仅包含结构,甚至于蛋白都只有序列信息。特征信息有待扩充:如三维坐标,物理化学性质。
  2. 看上去似乎是构建了蛋白和配体之间的相互作用,但实际上也就是两个图之间的特征相关性。相互作用其实也是可以作为一种输入表征的。
  3. 蛋白和配体的结合过程是一个动态拟合过程,依赖固定的2维分子图做预测可能并不够充分。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/619947.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

gcn代码处理出现的问题

README 版本不一致 python 2.7 PYTHON 3.7 切换 TensorFlow系统的学习使用 数据集下载

LoRa无线电机温振传感器,FlexLua低代码技术助力快速实现。

在物联网时代,无线传感技术的应用愈发广泛。其中,LoRa(长距离低功耗无线技术)作为一种适用于远距离、低功耗的通信技术,被广泛应用于各种物联网场景。而结合温度和振动传感技术,能够构建出用于监测机器状态…

多维时序 | Matlab实现TCN-LSTM时间卷积长短期记忆神经网络多变量时间序列预测

多维时序 | Matlab实现TCN-LSTM时间卷积长短期记忆神经网络多变量时间序列预测 目录 多维时序 | Matlab实现TCN-LSTM时间卷积长短期记忆神经网络多变量时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.【Matlab实现TCN-LSTM时间卷积长短期记忆神经网络多变量…

构建跨设备3D应用:HOOPS的跨平台开发能力

在当今数字化和可视化需求不断提升的时代,三维技术的应用越来越广泛,尤其在制造、建筑、工程及媒体行业。HOOPS,由Tech Soft 3D开发,是一套全面的软件开发工具包,用于构建高性能的三维应用程序。该工具包涵盖了从三维渲…

架构师系列-搜索引擎ElasticSearch(九)- 分布式文档原理

索引的路由计算 当索引一个文档的时候,文档会被存储到一个主分片中, Elasticsearch如何知道一个文档应该存放到哪个分片中呢? 肯定不是随机的而是根据以下算法来决定的 shard hash(routing)% number_of_primary_shards 1) routing值是一个任意字符串…

c++ - 类的默认成员函数

文章目录 前言一、构造函数二、析构函数三、拷贝构造函数四、重载赋值操作符五、取地址及const取地址操作符重载 前言 默认成员函数是编译器自动生成的,也可以自己重写,自己重写之后编译器就不再生成,下面是深入了解这些成员函数。 一、构造…

3dmax制作小熊猫的基本流程

1.透视图插入面片,改高度宽度,把参考图放进面片里。 2.角度捕捉切换,角度改为90 3.shift旋转,旋转面片,复制一个出来 4.在前视图,把参考图片中的正式图小熊猫的一半的位置(可以是眼睛&#x…

003 【笔记神器】Obsidian:打造属于自己的万能工作台

前言:Obsidian 是一款很多大神都在用的笔记软件,具有强大的功能,能够满足日常各种笔记的需求。强大之处在于:Obsidian 能够安装各种强大的插件,实现各种功能。 废话不多说,玩转 Obsidian 仅需这篇文章足矣&…

第G7周:Semi-Supervised GAN 理论与实战

🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 | 接辅导、项目定制🚀 文章来源:K同学的学习圈子 参考论文:《Semi-Supervised Learning with Generative Adversarial Netw…

企业级OVSSL证书的五大优势

在数字化时代,企业级OVSSL(Organization Validation Secure Sockets Layer)证书已成为保护网站安全、提升用户信任度的重要工具。越来越多企业在自身网络安全方面更倾向于OVSSL证书,以下就带你了解企业级OVSSL证书的五大优势&…

【LeetCode】2635. 转换数组中的每个元素

转换数组中的每个元素 编写一个函数,这个函数接收一个整数数组 arr 和一个映射函数 fn,通过该映射函数返回一个新的数组。 返回数组的创建语句应为 returnedArray[i] fn(arr[i], i)。 请你在不使用内置方法 Array.map 的前提下解决这个问题。 示例 1:…

第 6 章 URDF、Gazebo与Rviz综合应用(自学二刷笔记)

重要参考: 课程链接:https://www.bilibili.com/video/BV1Ci4y1L7ZZ 讲义链接:Introduction Autolabor-ROS机器人入门课程《ROS理论与实践》零基础教程 6.7.2 雷达信息仿真以及显示 通过 Gazebo 模拟激光雷达传感器,并在 Rviz 中显示激光数据。 实现…