J垃圾回收

J垃圾回收

  • 1 概述
  • 2 方法区的回收
  • 3 如何判断对象可以回收
    • 3.1 引用计数法
    • 3.2 可达性分析法
  • 4 常见的引用对象
    • 4.1 软引用
    • 4.2 弱引用
    • 4.3 虚引用
    • 4.4 终结器引用
  • 5 垃圾回收算法
    • 5.1 垃圾回收算法的历史和分类
    • 5.2 垃圾回收算法的评价标准
    • 5.3 标记清除算法
    • 5.4 复制算法
    • 5.5 标记整理算法
    • 5.6 分代垃圾回收算法

1 概述

在C/C++这类没有自动垃圾回收机制的语言中,一个对象如果不再使用,需要手动释放,否则就会出现内存泄漏。

内存泄漏指的是不再使用的对象在系统中未被回收,内存泄漏的积累可能会导致内存溢出。

为了让程序员更专注于代码的实现,而不用过多的考虑内存释放的问题,所以,在Java语言中,有了自动的垃圾回收机制,也就是我们熟悉的GC(Garbage Collection)。

有了垃圾回收机制后,程序员只需要关心内存的申请即可,内存的释放由系统自动识别完成,垃圾回收器主要负责对上的内存进行回收。

在进行垃圾回收时,不同的对象引用类型,GC会采用不同的回收时机

换句话说,自动的垃圾回收的算法就会变得非常重要了,如果因为算法的不合理,导致内存资源一直没有释放,同样也可能会导致内存溢出的。

当然,除了Java语言,C#、Python等语言也都有自动的垃圾回收机制。

垃圾回收器如果发现某个对象不再使用,就可以回收该对象。

在这里插入图片描述

在这里插入图片描述

  • 自动垃圾回收,自动根据对象是否使用由虚拟机来回收对象
    • 优点:降低程序员实现难度、降低对象回收bug的可能性
    • 缺点:程序员无法控制内存回收的及时性
  • 手动垃圾回收,由程序员编程实现对象的删除
    • 优点:回收及时性高,由程序员把控回收的时机
    • 缺点:编写不当容易出现悬空指针、重复释放、内存泄漏等问题

那么垃圾回收器需要负责对哪些部分的内存进行回收呢?

首先是线程不共享的部分,都是伴随着线程的创建而创建,线程的销毁而销毁。而方法的栈帧在执行完方法之后就会自动弹出栈并释放掉对应的内存。所以这一部分不需要垃圾回收器负责回收。

在这里插入图片描述

2 方法区的回收

方法区中能回收的内容主要就是不再使用的类。

判定一个类可以被卸载。需要同时满足下面三个条件:

  1. 此类所有实例对象都已经被回收,在堆中不存在任何该类的实例对象以及子类对象。
    这段代码中就将局部变量对堆上实例对象的引用去除了,所以对象就可以被回收。

    在这里插入图片描述

  2. 加载该类的类加载器已经被回收。
    这段代码让局部变量对类加载器的引用去除,类加载器就可以回收。
    在这里插入图片描述

  3. 该类对应的 java.lang.Class 对象没有在任何地方被引用。
    在这里插入图片描述

代码:

package chapter04.gc;import java.net.URL;
import java.net.URLClassLoader;
import java.util.ArrayList;/*** 类的卸载*/
public class ClassUnload {public static void main(String[] args) throws InterruptedException {try {ArrayList<Class<?>> classes = new ArrayList<>();ArrayList<URLClassLoader> loaders = new ArrayList<>();ArrayList<Object> objs = new ArrayList<>();while (true) {URLClassLoader loader = new URLClassLoader(new URL[]{new URL("file:D:\\lib\\")});Class<?> clazz = loader.loadClass("ClassLoader.A");Object o = clazz.newInstance();//                objs.add(o);
//                classes.add(clazz);
//                loaders.add(loader);System.gc();}} catch (Exception e) {e.printStackTrace();}}
}

添加这两个虚拟机参数进行测试:

-XX:+TraceClassLoading -XX:+TraceClassUnloading

在这里插入图片描述

如果注释掉代码中三句add调用,就可以同时满足3个条件。但是需要手动调用System.gc()方法,让垃圾回收器进行回收。

如果需要手动触发垃圾回收,可以调用System.gc()方法。
语法: System.gc()
注意事项:
调用System.gc()方法并不一定会立即回收垃圾,仅仅是向Java虚拟机发送一个垃圾回收的请求,具体是否需要执行垃圾回收Java虚拟机会自行判断。

执行之后,日志中就会打印出类卸载的内容:

在这里插入图片描述

那么类卸载主要用在什么场景下呢?

开发中此类场景一般很少出现,主要在如 OSGi、JSP 的热部署等应用场景中。

每个jsp文件对应一个唯一的类加载器,当一个jsp文件修改了,就直接卸载这个jsp类加载器。重新创建类加载器,重新加载jsp文件。

3 如何判断对象可以回收

对象的回收发生在堆中

在这里插入图片描述

垃圾回收器要回收对象的第一步就是判断哪些对象可以回收。Java中的对象是否能被回收,是根据对象是否被引用来决定的。如果对象被引用了,说明该对象还在使用,不允许被回收。

比如下面代码的内存结构图:

第一行代码执行之后,堆上创建了Demo类的实例对象,同时栈上保存局部变量引用堆上的对象。

在这里插入图片描述

第二行代码执行之后,局部变量对堆上的对象引用去掉,那么堆上的对象就可以被回收了。

在这里插入图片描述

一个更复杂的案例:

在这里插入图片描述

这个案例中,如果要让对象a和b回收,必须将局部变量到堆上的引用去除。

在这里插入图片描述

那么问题来了,A和B互相之间的引用需要去除吗?答案是不需要,因为局部变量都没引用这两个对象了,在代码中已经无法访问这两个对象,即便他们之间互相有引用关系,也不影响对象的回收。

简单一句就是:如果一个或多个对象没有任何的引用指向它了,那么这个对象现在就是垃圾,如果定位了垃圾,则有可能会被垃圾回收器回收。

判断对象是否可以回收,主要有两种方式:引用计数法可达性分析法。

3.1 引用计数法

引用计数法会为每个对象维护一个引用计数器,当对象被引用时加1,取消引用时减1。

比如下图中,对象A的计数器初始为0,局部变量a1对它引用之后,计数器加1就变成了1。同样A对B产生了引用,B的计数器也是1。

在这里插入图片描述
引用计数法的优点是实现简单,C++中的智能指针就采用了引用计数法,但是它也存在缺点,主要有两点:

  1. 每次引用和取消引用都需要维护计数器,对系统性能会有一定的影响
  2. 存在循环引用问题,所谓循环引用就是当A引用B,B同时引用A时会出现对象无法回收的问题。

这张图上,由于A和B之间存在互相引用,所以计数器都为1,两个对象都不能被回收。但是由于没有局部变量对这两个代码产生引用,代码中已经无法访问到这两个对象,理应可以被回收。

在这里插入图片描述

我们来做一个实验,验证下Java中循环引用不会导致内存泄漏,因为Java虚拟机根本没有使用引用计数法。首先我们要学会去看一个对象有没有被回收,可以通过垃圾回收日志来查看。

如果想要查看垃圾回收的信息,可以使用-verbose:gc参数。
语法: -verbose:gc

在这里插入图片描述

加上这个参数之后执行代码,发现对象确实被回收了:

在这里插入图片描述

通过不同的死循环创建对象,内存并没有上升,一直维持在1000K,说明每轮循环创建的两个对象在垃圾回收之后都被回收了。

总结:

优点:

  • 实时性较高,无需等到内存不够的时候,才开始回收,运行时根据对象的计数器是否为0,就可以直接回收。
  • 在垃圾回收过程中,应用无需挂起。如果申请内存时,内存不足,则立刻报OOM错误。
  • 区域性,更新对象的计数器时,只是影响到该对象,不会扫描全部对象。

缺点:

  • 每次对象被引用时,都需要去更新计数器,有一点时间开销。
  • 浪费CPU资源,即使内存够用,仍然在运行时进行计数器的统计。
  • 无法解决循环引用问题,会引发内存泄露。(最大的缺点)

3.2 可达性分析法

Java使用的是可达性分析算法来判断对象是否可以被回收。可达性分析将对象分为两类:垃圾回收的根对象(GC Root) 和普通对象,对象与对象之间存在引用关系。

会存在一个根节点【GC Roots】,引出它下面指向的下一个节点,再以下一个节点节点开始找出它下面的节点,依次往下类推。直到所有的节点全部遍历完毕,可达性分析算法指的是如果从某个到GC Root对象是可达的,对象就不可被回收。

在这里插入图片描述

哪些对象被称之为GC Root对象呢?

  • 根对象是那些肯定不能当做垃圾回收的对象,就可以当做根对象

  • 线程Thread对象,引用线程栈帧中的方法参数、局部变量等。

    /**
    * demo是栈帧中的本地变量,当 demo = null 时,由于此时 demo 充当了 GC Root 的作用,demo与原来指向的实例 new Demo() 断开了连接,对象被回收。*/
    public class Demo {public static  void main(String[] args) {Demo demo = new Demo();demo = null;}
    }
    
  • 系统类加载器加载的java.lang.Class对象,引用类中的静态变量。
    在这里插入图片描述

  • 监视器对象,用来保存同步锁synchronized关键字持有的对象。
    在这里插入图片描述

  • 方法区中类静态属性引用的对象

    /*** 当栈帧中的本地变量 b = null 时,由于 b 原来指向的对象与 GC Root (变量 b) 断开了连接,所以 b 原来指向的对象会被回收,而由于我们给 a 赋值了变量的引用,a在此时是类静态属性引用,充当了 GC Root 的作用,它指向的对象依然存活!*/
    public class Demo {public static Demo a;public static  void main(String[] args) {Demo b = new Demo();b.a = new Demo();b = null;}
    }
    
  • 方法区中常量引用的对象

    /**
    * 常量 a 指向的对象并不会因为 demo 指向的对象被回收而回收*/
    public class Demo {public static final Demo a = new Demo();public static  void main(String[] args) {Demo demo = new Demo();demo = null;}
    }
    
  • 本地方法调用时使用的全局对象。

通过arthas和eclipse Memory Analyzer (MAT) 工具可以查看GC Root,MAT工具是eclipse推出的Java堆内存检测工具。

4 常见的引用对象

可达性算法中描述的对象引用,一般指的是强引用,即是GCRoot对象对普通对象有引用关系,只要这层关系存在,普通对象就不会被回收。除了强引用之外,Java中还设计了几种其他引用方式:

  • 软引用
  • 弱引用
  • 虚引用
  • 终结器引用

4.1 软引用

软引用相对于强引用是一种比较弱的引用关系,如果一个对象只有软引用关联到它,当程序内存不足时,就会将软引用中的数据进行回收。在JDK 1.2版之后提供了SoftReference类来实现软引用,软引用常用于缓存中。

如下图中,对象A被GC Root对象强引用了,同时我们创建了一个软引用SoftReference对象(它本身也是一个对象),软引用对象中引用了对象A。

在这里插入图片描述

接下来强引用被去掉之后,对象A暂时还是处于不可回收状态,因为有软引用存在并且内存还够用。

在这里插入图片描述

如果内存出现不够用的情况,对象A就处于可回收状态,可以被垃圾回收器回收。

在这里插入图片描述

这样做有什么好处?如果对象A是一个缓存,平时会保存在内存中,如果想访问数据可以快速访问。但是如果内存不够用了,我们就可以将这部分缓存清理掉释放内存。即便缓存没了,也可以从数据库等地方获取数据,不会影响到业务正常运行,这样可以减少内存溢出产生的可能性。

特别注意:

软引用对象本身,也需要被强引用,否则软引用对象也会被回收掉。

在这里插入图片描述

软引用的执行过程如下:

  1. 将对象使用软引用包装起来,new SoftReference<对象类型>(对象)。
  2. 内存不足时,虚拟机尝试进行垃圾回收。
  3. 如果垃圾回收仍不能解决内存不足的问题,回收软引用中的对象。
  4. 如果依然内存不足,抛出OutOfMemory异常。

代码:

/*** 软引用案例2 - 基本使用*/
public class SoftReferenceDemo2 {public static void main(String[] args) throws IOException {byte[] bytes = new byte[1024 * 1024 * 100];SoftReference<byte[]> softReference = new SoftReference<byte[]>(bytes);bytes = null;System.out.println(softReference.get());byte[] bytes2 = new byte[1024 * 1024 * 100];System.out.println(softReference.get());
//
//        byte[] bytes3 = new byte[1024 * 1024 * 100];
//        softReference = null;
//        System.gc();
//
//        System.in.read();}
}

添加虚拟机参数,限制最大堆内存大小为200m:

在这里插入图片描述

执行后发现,第二个100m对象创建之后需,软引用中包含的对象已经被回收了。

在这里插入图片描述

软引用对象本身怎么回收呢?

如果软引用对象里边包含的数据已经被回收了,那么软引用对象本身其实也可以被回收了。

SoftReference提供了一套队列机制:

  1. 软引用创建时,通过构造器传入引用队列

    在这里插入图片描述

  2. 在软引用中包含的对象被回收时,该软引用对象会被放入引用队列

    在这里插入图片描述

  3. 通过代码遍历引用队列,将SoftReference的强引用删除

代码:

/*** 软引用案例3 - 引用队列使用*/
public class SoftReferenceDemo3 {public static void main(String[] args) throws IOException {ArrayList<SoftReference> softReferences = new ArrayList<>();ReferenceQueue<byte[]> queues = new ReferenceQueue<byte[]>();for (int i = 0; i < 10; i++) {byte[] bytes = new byte[1024 * 1024 * 100];SoftReference studentRef = new SoftReference<byte[]>(bytes,queues);softReferences.add(studentRef);}SoftReference<byte[]> ref = null;int count = 0;while ((ref = (SoftReference<byte[]>) queues.poll()) != null) {count++;}System.out.println(count);}
}

最终展示的结果是:

在这里插入图片描述

这9个软引用对象中包含的数据已经被回收掉,所以可以手动从ArrayList中去掉,这样就可以释放这9个对象。

软引用的缓存案例

使用软引用实现学生信息的缓存,能支持内存不足时清理缓存。

在这里插入图片描述

代码:

package chapter04.soft;import java.lang.ref.ReferenceQueue;
import java.lang.ref.SoftReference;
import java.util.HashMap;
import java.util.Map;
/*** 软引用案例4 - 学生信息的缓存*/
public class StudentCache {private static StudentCache cache = new StudentCache();public static void main(String[] args) {for (int i = 0; ; i++) {StudentCache.getInstance().cacheStudent(new Student(i, String.valueOf(i)));}}private Map<Integer, StudentRef> StudentRefs;// 用于Cache内容的存储private ReferenceQueue<Student> q;// 垃圾Reference的队列// 继承SoftReference,使得每一个实例都具有可识别的标识。// 并且该标识与其在HashMap内的key相同。private class StudentRef extends SoftReference<Student> {private Integer _key = null;public StudentRef(Student em, ReferenceQueue<Student> q) {super(em, q);_key = em.getId();}}// 构建一个缓存器实例private StudentCache() {StudentRefs = new HashMap<Integer, StudentRef>();q = new ReferenceQueue<Student>();}// 取得缓存器实例public static StudentCache getInstance() {return cache;}// 以软引用的方式对一个Student对象的实例进行引用并保存该引用private void cacheStudent(Student em) {cleanCache();// 清除垃圾引用StudentRef ref = new StudentRef(em, q);StudentRefs.put(em.getId(), ref);System.out.println(StudentRefs.size());}// 依据所指定的ID号,重新获取相应Student对象的实例public Student getStudent(Integer id) {Student em = null;
// 缓存中是否有该Student实例的软引用,如果有,从软引用中取得。if (StudentRefs.containsKey(id)) {StudentRef ref = StudentRefs.get(id);em = ref.get();}
// 如果没有软引用,或者从软引用中得到的实例是null,重新构建一个实例,
// 并保存对这个新建实例的软引用if (em == null) {em = new Student(id, String.valueOf(id));System.out.println("Retrieve From StudentInfoCenter. ID=" + id);this.cacheStudent(em);}return em;}// 清除那些所软引用的Student对象已经被回收的StudentRef对象private void cleanCache() {StudentRef ref = null;while ((ref = (StudentRef) q.poll()) != null) {StudentRefs.remove(ref._key);}}//    // 清除Cache内的全部内容
//    public void clearCache() {
//        cleanCache();
//        StudentRefs.clear();
//        //System.gc();
//        //System.runFinalization();
//    }
}class Student {int id;String name;public Student(int id, String name) {this.id = id;this.name = name;}public int getId() {return id;}public void setId(int id) {this.id = id;}public String getName() {return name;}public void setName(String name) {this.name = name;}
}

4.2 弱引用

弱引用的整体机制和软引用基本一致,区别在于弱引用包含的对象在垃圾回收时,不管内存够不够都会直接被回收。 在JDK 1.2版之后提供了WeakReference类来实现弱引用,弱引用主要在ThreadLocal中使用。

弱引用对象本身也可以使用引用队列进行回收。

package chapter04.weak;import java.io.IOException;
import java.lang.ref.WeakReference;/*** 弱引用案例 - 基本使用*/
public class WeakReferenceDemo2 {public static void main(String[] args) throws IOException {byte[] bytes = new byte[1024 * 1024 * 100];WeakReference<byte[]> weakReference = new WeakReference<byte[]>(bytes);bytes = null;System.out.println(weakReference.get());System.gc();System.out.println(weakReference.get());}
}

执行之后发现gc执行之后,对象已经被回收了。

在这里插入图片描述

延伸话题:ThreadLocal内存泄漏问题

ThreadLocal用的就是弱引用,看以下源码:

static class Entry extends WeakReference<ThreadLocal<?>> {Object value;Entry(ThreadLocal<?> k, Object v) {super(k);value = v; //强引用,不会被回收}
}

Entry的key是当前ThreadLocal,value值是我们要设置的数据。

WeakReference表示的是弱引用,当JVM进行GC时,一旦发现了只具有弱引用的对象,不管当前内存空间是否足够,都会回收它的内存。但是value是强引用,它不会被回收掉。

ThreadLocal使用建议:使用完毕后注意调用清理方法。

4.3 虚引用

虚引用和终结器引用这两种引用在常规开发中是不会使用的。

  • 虚引用也叫幽灵引用/幻影引用,不能通过虚引用对象获取到包含的对象。虚引用唯一的用途是当对象被垃圾回收器回收时可以接收到对应的通知。

  • Java中使用PhantomReference实现了虚引用,直接内存中为了及时知道直接内存对象不再使用,从而回收内存,使用了虚引用来实现。

  • 必须配合引用队列使用,被引用对象回收时,会将虚引用入队,由 Reference Handler 线程调用虚引用相关方法释放直接内存

在这里插入图片描述

在这里插入图片描述

4.4 终结器引用

  • 终结器引用指的是在对象需要被回收时,终结器引用会关联对象并放置在Finalizer类中的引用队列中,在稍后由一条由FinalizerThread线程从队列中获取对象,然后执行对象的finalize方法,在对象第二次被回收时,该对象才真正的被回收。
  • 在这个过程中可以在finalize方法中再将自身对象使用强引用关联上,但是不建议这样做。
package chapter04.finalreference;/*** 终结器引用案例*/
public class FinalizeReferenceDemo {public static FinalizeReferenceDemo reference = null;public void alive() {System.out.println("当前对象还存活");}@Overrideprotected void finalize() throws Throwable {try{System.out.println("finalize()执行了...");//设置强引用自救reference = this;}finally {super.finalize();}}public static void main(String[] args) throws Throwable {reference = new FinalizeReferenceDemo();test();test();}private static void test() throws InterruptedException {reference = null;//回收对象System.gc();//执行finalize方法的优先级比较低,休眠500ms等待一下Thread.sleep(500);if (reference != null) {reference.alive();} else {System.out.println("对象已被回收");}}
}

当对象被标记为可回收后,当发生GC时,首先会判断这个对象是否执行了finalize方法,如果这个方法还没有被执行的话,那么就会先来执行这个方法,接着在这个方法执行中,可以设置当前这个对象与GC ROOTS产生关联,那么这个方法执行完成之后,GC会再次判断对象是否可达,如果仍然不可达,则会进行回收,如果可达了,则不会进行回收。

finalize方法对于每一个对象来说,只会执行一次。如果第一次执行这个方法的时候,设置了当前对象与RC ROOTS关联,那么这一次不会进行回收。 那么等到这个对象第二次被标记为可回收时,那么该对象的finalize方法就不会再次执行了。

5 垃圾回收算法

Java是如何实现垃圾回收的呢?简单来说,垃圾回收要做的有两件事:

  1. 找到内存中存活的对象。
  2. 释放不再存活对象的内存,使得程序能再次利用这部分空间。

在这里插入图片描述

5.1 垃圾回收算法的历史和分类

1960年John McCarthy发布了第一个GC算法:标记-清除算法。

1963年Marvin L. Minsky 发布了复制算法。

本质上后续所有的垃圾回收算法,都是在上述两种算法的基础上优化而来。

在这里插入图片描述

5.2 垃圾回收算法的评价标准

Java垃圾回收过程会通过单独的GC线程来完成,但是不管使用哪一种GC算法,都会有部分阶段需要停止所有的用户线程。这个过程被称之为Stop The World简称STW,如果STW时间过长则会影响用户的使用。

如下图,用户代码执行和垃圾回收执行让用户线程停止执行(STW)是交替执行的。

在这里插入图片描述

所以判断GC算法是否优秀,可以从三个方面来考虑:

1.吞吐量

吞吐量指的是 CPU 用于执行用户代码的时间与 CPU 总执行时间的比值,即吞吐量 = 执行用户代码时间 /(执行用户代码时间 + GC时间)。吞吐量数值越高,垃圾回收的效率就越高。

在这里插入图片描述

2.最大暂停时间

最大暂停时间指的是所有在垃圾回收过程中的STW时间最大值。比如如下的图中,黄色部分的STW就是最大暂停时间,显而易见上面的图比下面的图拥有更少的最大暂停时间。最大暂停时间越短,用户使用系统时受到的影响就越短。

在这里插入图片描述

3.堆使用效率

不同垃圾回收算法,对堆内存的使用方式是不同的。比如标记清除算法,可以使用完整的堆内存。而复制算法会将堆内存一分为二,每次只能使用一半内存。从堆使用效率上来说,标记清除算法要优于复制算法。

上述三种评价标准:堆使用效率、吞吐量,以及最大暂停时间不可兼得。
一般来说,堆内存越大,最大暂停时间就越长。想要减少最大暂停时间,就会降低吞吐量。

在这里插入图片描述

没有一个垃圾回收算法能兼顾上述三点评价标准,所以不同的垃圾回收算法它的侧重点是不同的,适用于不同的应用场景。

5.3 标记清除算法

标记清除算法的核心思想分为两个阶段:

  1. 根据可达性分析算法得出的垃圾进行标记

  2. 对这些标记为可回收的内容进行垃圾回收

在这里插入图片描述

可以看到,标记清除算法解决了引用计数算法中的循环引用的问题,没有从root节点引用的对象都会被回收。

优点:

实现简单,只需要在第一阶段给每个对象维护标志位,第二阶段删除对象即可。

缺点:

1.碎片化问题, 由于内存是连续的,所以在对象被删除之后,内存中会出现很多细小的可用内存单元。如果我们需要的是一个比较大的空间,很有可能这些内存单元的大小过小无法进行分配。

如下图,红色部分已经被清理掉了,总共回收了9个字节,但是每个都是一个小碎片,无法为5个字节的对象分配空间。

在这里插入图片描述

2.分配速度慢。 由于内存碎片的存在,需要维护一个空闲链表,极有可能发生每次需要遍历到链表的最后才能获得合适的内存空间。

我们需要用一个链表来维护,哪些空间可以分配对象,很有可能需要遍历这个链表到最后,才能发现这块空间足够我们去创建一个对象。如下图,遍历到最后才发现有足够的空间分配3个字节的对象了。如果链表很长,遍历也会花费较长的时间。

在这里插入图片描述
3.效率较低标记和清除两个动作都需要遍历所有的对象,并且在GC时,需要停止应用程序,对于交互性要求比较高的应用而言这个体验是非常差的。

5.4 复制算法

复制算法的核心就是,将原有的内存空间一分为二(From空间和To空间),每次只能使用其中的一块空间(From空间),在垃圾回收时,将正在使用的对象复制到另一个内存空间中(To空间),然后将该内存空间(From空间)清空,交换两个内存的角色(将两块空间的From和To名字互换),完成垃圾的回收,下次依然在From空间上创建对象。

如果内存中的垃圾对象较多,需要复制的对象就较少,这种情况下适合使用该方式并且效率比较高,反之,则不适合。

在这里插入图片描述

关键点总结:

  1. 将内存区域分成两部分,每次操作其中一个。

  2. 当进行垃圾回收时,将正在使用的内存区域中的存活对象移动到未使用的内存区域。当移动完对这部分内存区域一次性清除。

  3. 周而复始。

核心流程演示:

1.将堆内存分割成两块From空间 To空间,对象分配阶段,创建对象。

在这里插入图片描述

2.GC阶段开始,将GC Root搬运到To空间

在这里插入图片描述

3.将GC Root关联的对象,搬运到To空间

在这里插入图片描述

4.清理From空间,并把名称互换

在这里插入图片描述
优点:

  • 吞吐量高,复制算法只需要遍历一次存活对象复制到To空间即可,比标记-整理算法少了一次遍历的过程,因而性能较好,但是不如标记-清除算法,因为标记清除算法不需要进行对象的移动
  • 不会发生碎片化,复制算法在复制之后就会将对象按顺序放入To空间中,所以对象以外的区域都是可用空间,不存在碎片化内存空间

缺点:

  • 内存使用效率低,每次只能让一半的内存空间来为创建对象使用。

5.5 标记整理算法

标记整理算法也叫标记压缩算法,是在标记清除算法的基础之上,做了优化改进的算法。和标记清除算法一样,也是从根节点开始,对对象的引用进行标记,在清理阶段,并不是简单的直接清理可回收对象,而是将存活对象都向内存另一端移动,然后清理边界以外的垃圾,从而解决了碎片化的问题。

核心思想分为两个阶段:

  1. 标记阶段,将所有存活的对象进行标记。Java中使用可达性分析算法,从GC Root开始通过引用链遍历出所有存活对象。
  2. 整理阶段,将存活对象移动到堆的一端。清除存活边界以外的垃圾。

优点:

  • 内存使用效率高,整个堆内存都可以使用,不会像复制算法只能使用半个堆内存
  • 不会发生碎片化,在整理阶段可以将对象往内存的一侧进行移动,剩下的空间都是可以分配对象的有效空间

缺点:

  • 整理阶段的效率不高,整理算法有很多种,比如Lisp2整理算法需要对整个堆中的对象搜索3次,整体性能不佳。可以通过Two-Finger、表格算法、ImmixGC等高效的整理算法优化此阶段的性能。

5.6 分代垃圾回收算法

现代优秀的垃圾回收算法,会将上述描述的垃圾回收算法组合进行使用,其中应用最广的就是分代垃圾回收算法(Generational GC)。

分代垃圾回收将整个内存区域划分为年轻代(新生代)和老年代【1:2】

在这里插入图片描述

对于新生代,内部又被分为了三个区域。Eden区,S0区,S1区【8:1:1】:

在这里插入图片描述

当对新生代产生GC:MinorGC【young GC】

当对老年代代产生GC:Major GC

当对新生代和老年代产生FullGC: 新生代 + 老年代完整垃圾回收,暂停时间长,应尽力避免

我们通过arthas来验证下内存划分的情况:

  • 在JDK8中,添加-XX:+UseSerialGC参数使用分代回收的垃圾回收器,运行程序。
  • 在arthas中使用memory命令查看内存,显示出三个区域的内存情况。

在这里插入图片描述

Eden + survivor 这两块区域组成了年轻代。

tenured_gen指的是晋升区域,其实就是老年代。

另外还可以选择的虚拟机参数如下:

含义参数
堆初始大小-Xms
堆最大大小-Xmx 或 -XX:MaxHeapSize=size
新生代大小-Xmn 或 (-XX:NewSize=size + -XX:MaxNewSize=size )
幸存区比例(动态)-XX:InitialSurvivorRatio=ratio 和 -XX:+UseAdaptiveSizePolicy
幸存区比例-XX:SurvivorRatio=ratio
晋升阈值-XX:MaxTenuringThreshold=threshold
晋升详情-XX:+PrintTenuringDistribution
GC详情-XX:+PrintGCDetails -verbose:gc
FullGC 前 MinorGC-XX:+ScavengeBeforeFullGC

代码:

package chapter04.gc;import java.io.IOException;
import java.util.ArrayList;
import java.util.List;/*** 垃圾回收器案例1*/
//-XX:+UseSerialGC  -Xms60m -Xmn20m -Xmx60m -XX:SurvivorRatio=3  -XX:+PrintGCDetails
public class GcDemo0 {public static void main(String[] args) throws IOException {List<Object> list = new ArrayList<>();int count = 0;while (true){System.in.read();System.out.println(++count);//每次添加1m的数据list.add(new byte[1024 * 1024 * 1]);}}
}

使用arthas的memory展示出来的效果:

在这里插入图片描述

heap展示的是可用堆,survivor区每次只有一块能使用,所以60 - 4 = 56m。

工作机制

1、分代回收时,新创建出来的对象,首先会被放入Eden伊甸园区。

在这里插入图片描述

2、随着对象在Eden区越来越多,如果Eden区满,新创建的对象已经无法放入,就会触发年轻代的GC,称为Minor GC或者Young GC。

Minor GC会把需要eden中和From需要回收的对象回收,把没有回收的对象放入To区(采用复制算法),复制完毕后,伊甸园和 from 内存都得到释放。

在这里插入图片描述

3、接下来,S0会变成To区,S1变成From区。当eden区满时再往里放入对象,依然会发生Minor GC。

在这里插入图片描述

此时会回收eden区和S1(from)中的对象,并把eden和from区中剩余的对象放入S0。

注意:每次Minor GC中都会为对象记录他的年龄,初始值为0,每次GC完加1。

4、如果Minor GC后对象的年龄达到阈值(最大15,默认值和垃圾回收器有关),对象就会被晋升至老年代(幸存区内存不足或大对象会导致提前晋升)。

在这里插入图片描述

在这里插入图片描述

当老年代中空间不足,无法放入新的对象时,先尝试minor gc如果还是不足,就会触发Full GC,Full GC会对整个堆进行垃圾回收。

如果Full GC依然无法回收掉老年代的对象,那么当对象继续放入老年代时,就会抛出Out Of Memory异常。

在这里插入图片描述

下图中的程序为什么会出现OutOfMemory?

在这里插入图片描述

从上图可以看到,Full GC无法回收掉老年代的对象,那么当对象继续放入老年代时,就会抛出Out Of Memory异常。

继续使用这段代码测试:


//-XX:+UseSerialGC  -Xms60m -Xmn20m -Xmx60m -XX:SurvivorRatio=3  -XX:+PrintGCDetails
public class GcDemo0 {public static void main(String[] args) throws IOException {List<Object> list = new ArrayList<>();int count = 0;while (true){System.in.read();System.out.println(++count);//每次添加1m的数据list.add(new byte[1024 * 1024 * 1]);}}
}

结果如下:

在这里插入图片描述

老年代已经满了,而且垃圾回收无法回收掉对象,如果还想往里面放就发生了OutOfMemoryError

MinorGC、 Mixed GC 、 FullGC的区别是什么:

在这里插入图片描述

  • MinorGC【young GC】发生在新生代的垃圾回收,暂停时间短(STW)

  • Mixed GC 新生代 + 老年代部分区域的垃圾回收,G1 收集器特有

  • FullGC: 新生代 + 老年代完整垃圾回收,暂停时间长(STW),应尽力避免?

名词解释:

STW(Stop-The-World):暂停所有应用程序线程,等待垃圾回收的完成

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/620711.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【深入理解Java IO流0x0A】NIO实战-网络聊天室

本篇博客将进行NIO编程实战&#xff0c;实现一个简单聊天室。 我们来通过 SocketChannel 和 ServerSocketChannel 实现一个 0.1 版的聊天室&#xff0c;先说一下需求&#xff0c;比较简单&#xff0c;服务端启动监听客户端请求&#xff0c;当客户端向服务器端发送信息后&#x…

如何落地一个FaaS平台?

简介&#xff1a; 函数即服务&#xff08;FaaS&#xff09;作为云计算 2.0 时代重要的发展方向&#xff0c;能够从工程效率、可靠性、性能、成本等方面给开发者带来巨大的价值&#xff0c;尤其是能够极大地提升研发效率。因此&#xff0c;拥抱FaaS成为开发者关心的重要技术领域…

FPGA - 仲裁器的设计实现

一&#xff0c;为什么做仲裁 在多主单从的设计中&#xff0c;当多个源端同时发起传输请求时&#xff0c;这个时候就需要仲裁器来根据优先级来判断响应哪一个源端&#xff0c;向其传输数据。比如&#xff1a;以太网仲裁&#xff0c;DDR仲裁&#xff0c;光纤传图仲裁..... 二&a…

【Java开发指南 | 第二篇】标识符、Java关键字及注释

读者可订阅专栏&#xff1a;Java开发指南 |【CSDN秋说】 文章目录 标识符Java关键字Java注释 标识符 Java 所有的组成部分都需要名字。类名、变量名以及方法名都被称为标识符。 所有的标识符都应该以字母&#xff08;A-Z 或者 a-z&#xff09;,美元符&#xff08;$&#xff0…

从51到ARM裸机开发实验(009)LPC2138 中断实验

一、场景设计 中断的概念在《从51到ARM裸机开发实验(007) AT89C51 中断实验》中已经介绍过&#xff0c;LPC2138的Keil工程创建在《从51到ARM裸机开发实验(005)LPC2138 GPIO实验》中已经介绍过。本次使用LPC2138来实现一个这样的场景&#xff1a;四个LED依次亮灭&#xff0c;时间…

蓝桥杯2024年第十五届省赛

E:宝石组合 根据给的公式化简后变为gcd(a,b,c)根据算数基本定理&#xff0c;推一下就可以了 然后我们对1到mx的树求约数&#xff0c;并记录约数的次数&#xff0c;我们选择一个最大的且次数大于等3的就是gcd int mx; vector<int> g[N]; vector<int> cnt[N]; int…

如何应对MySQL单表数据量过大:垂直分表与水平分表策略解析

话接上回&#xff0c;单表最大数据建议两千万&#xff0c;那如果开发一个项目&#xff0c;预计注册量达到一个亿怎么办。 单表内放这么多数据&#xff0c;MYSQL底层B树的层级结构就可能会变得很高&#xff0c;磁盘io次数变多&#xff0c;性能会大幅度降低。所以考虑数据库分表…

光场相机建模与畸变校正改进方法

摘要&#xff1a;光场相机作为一种新型的成像系统&#xff0c;可以直接从一次曝光的图像中得到三维信息。为了能够更充分有效地利用光场数据包含的角度和位置信息&#xff0c;完成更加精准的场景深度计算&#xff0c;从而提升光场相机的三维重建的精度&#xff0c;需要实现精确…

大规模端云协同智能计算(大小模型端云协同联合学习)

原文作者&#xff1a;上海交通大学 吴帆 0 引言 目前&#xff0c;许多智能技术已经走入人们的日常生活&#xff0c;例如交互式商品推荐、人脸识别、语音识别、体征观测、疾病诊断、智能决策等&#xff0c;这些智能技术在为我们生活带来极大便利的同时&#xff0c;也深刻改变了…

解决VS2022创建项目只有解决方案看不到项目文件

问题&#xff1a;无法运行、看不到项目文件 解决&#xff1a; 检查环境变量是否正确

金属棒直线度测量仪:在线精准测量的关键工具

在现代工业生产中&#xff0c;金属棒的直线度是一个至关重要的参数。它的微小变化&#xff0c;直接关系到产品质量的优劣&#xff0c;因此准确测量金属棒的直线度成为了生产过程中的关键环节。 金属棒在线直线度测量仪应运而生&#xff0c;它是一种专门用于测量金属棒直线度的精…

秋招复习笔记——八股文部分:网络基础

TCP/IP 网络模型 应用层 最上层的&#xff0c;也是我们能直接接触到的就是应用层&#xff08;Application Layer&#xff09;&#xff0c;我们电脑或手机使用的应用软件都是在应用层实现。那么&#xff0c;当两个不同设备的应用需要通信的时候&#xff0c;应用就把应用数据传…