单细胞分析|映射和注释查询数据集

reference映射简介

在本文中,我们首先构建一个reference,然后演示如何利用该reference来注释新的查询数据集。生成后,该reference可用于通过cell类型标签传输和将查询cell投影到reference UMAP 等任务来分析其他查询数据集。值得注意的是,这不需要纠正底层原始查询数据,因此如果有高质量的reference可用,这可能是一种有效的策略。

数据集预处理

出于本示例的目的,我们选择了通过四种技术生成的人类胰岛细胞数据集:CelSeq (GSE81076) CelSeq2 (GSE85241)、Fluidigm C1 (GSE86469) 和 SMART-Seq2 (E-MTAB-5061)。为了方便起见,我们通过 SeuratData 包分发此数据集。元数据包含四个数据集中每个细胞的技术(技术列)和细胞类型注释(细胞类型列)。

library(Seurat)
library(SeuratData)
library(ggplot2)InstallData("panc8")

作为演示,我们将使用各种技术来构建参考。然后,我们将剩余的数据集映射到该参考上。我们首先从四种技术中选择cell,并在不进行整合的情况下进行分析。

接下来,我们将数据集整合到reference中。

pancreas.ref <- IntegrateLayers(object = pancreas.ref, method = CCAIntegration, orig.reduction = "pca",new.reduction = "integrated.cca", verbose = FALSE)
pancreas.ref <- FindNeighbors(pancreas.ref, reduction = "integrated.cca", dims = 1:30)
pancreas.ref <- FindClusters(pancreas.ref)
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 4679
## Number of edges: 190152
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.8680
## Number of communities: 15
## Elapsed time: 0 secondspancreas.ref <- RunUMAP(pancreas.ref, reduction = "integrated.cca", dims = 1:30)
DimPlot(pancreas.ref, group.by = c("tech", "celltype"))

使用整合后的reference进行细胞类型分类

Seurat 还支持将参考数据(或元数据)投影到查询对象上。虽然许多方法都是保守的(两个过程都从识别锚点开始),但数据传输和集成之间有两个重要区别:

  1. 在数据传输中,Seurat 不会更正或修改查询表达式数据。
  2. 在数据传输中,Seurat 有一个选项(默认设置)将引用的 PCA 结构投影到查询上,而不是使用 CCA 学习联合结构。我们通常建议在 scRNA-seq 数据集之间投影数据时使用此选项。

找到锚点后,我们使用 TransferData() 函数根据参考数据(参考单元类型标签的向量)对查询cell进行分类。 TransferData() 返回一个包含预测 ID 和预测分数的矩阵,我们可以将其添加到查询元数据中。

# select two technologies for the query datasets
pancreas.query <- subset(panc8, tech %in% c("fluidigmc1", "celseq"))
pancreas.query <- NormalizeData(pancreas.query)
pancreas.anchors <- FindTransferAnchors(reference = pancreas.ref, query = pancreas.query, dims = 1:30,reference.reduction = "pca")
predictions <- TransferData(anchorset = pancreas.anchors, refdata = pancreas.ref$celltype, dims = 1:30)
pancreas.query <- AddMetaData(pancreas.query, metadata = predictions)

因为我们拥有来自完整整合分析的原始标签注释,所以我们可以评估预测的细胞类型注释与完整参考的匹配程度。

在此示例中,我们发现细胞类型分类具有很高的一致性,超过 96% 的细胞被正确标记。

pancreas.query$prediction.match <- pancreas.query$predicted.id == pancreas.query$celltype
table(pancreas.query$prediction.match)
## 
## FALSE  TRUE 
##    63  1579

为了进一步验证这一点,我们可以检查特定胰岛细胞群的一些典型细胞类型标记。请注意,即使其中一些细胞类型仅由一个或两个细胞(例如 epsilon 细胞)代表,我们仍然能够正确对它们进行分类。

table(pancreas.query$predicted.id)
## 
##             acinar activated_stellate              alpha               beta 
##                262                 39                436                419 
##              delta             ductal        endothelial              gamma 
##                 73                330                 19                 41 
##         macrophage               mast            schwann 
##                 15                  2                  6VlnPlot(pancreas.query, c("REG1A", "PPY", "SST", "GHRL", "VWF", "SOX10"), group.by = "predicted.id")

UMAP 投影

我们还支持将查询投影到参考 UMAP 结构上。这可以通过计算参考 UMAP 模型然后调用 MapQuery() 而不是 TransferData() 来实现。

pancreas.ref <- RunUMAP(pancreas.ref, dims = 1:30, reduction = "integrated.cca", return.model = TRUE)
pancreas.query <- MapQuery(anchorset = pancreas.anchors, reference = pancreas.ref, query = pancreas.query,refdata = list(celltype = "celltype"), reference.reduction = "pca", reduction.model = "umap")p1 <- DimPlot(pancreas.ref, reduction = "umap", group.by = "celltype", label = TRUE, label.size = 3,repel = TRUE) + NoLegend() + ggtitle("Reference annotations")
p2 <- DimPlot(pancreas.query, reduction = "ref.umap", group.by = "predicted.celltype", label = TRUE,label.size = 3, repel = TRUE) + NoLegend() + ggtitle("Query transferred labels")
p1 + p2

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/623117.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vue3 vueUse 连接蓝牙

目录 vueuse安装&#xff1a; useBluetooth: 调用蓝牙API 扫描周期设备 选择设备配对 连接成功 vue3的网页项目连接电脑或者手机上的蓝牙设备&#xff0c;使用vueUse库&#xff0c;可以快速检查连接蓝牙设备。 vueUse库使用参考&#xff1a; VueUse工具库 常用api-CSDN…

【Android】Activity task和Instrumentation杂谈

文章目录 activity taskInstrumentation机制参考 Android不仅可以装载众多的系统组件&#xff0c;还可以将它们跨进程组成ActivityTask&#xff0c;这个特性使得每个应用都不是孤立的。 activity task 从数据结构角度看&#xff0c;Task有先后之分&#xff0c;源码实现上采取了…

苍穹外卖学习记录(二)

本节&#xff0c;主要是学习业务逻辑&#xff0c;我们以菜品管理为例&#xff1a; 在实现这部分前&#xff0c;我们要完成Mybatis的配置&#xff0c;即指定映射的mapper.xml文件路径以及对应的实体类&#xff0c;这部分配置是在application.yml文件中实现的。 mybatis:#mapper…

社交媒体数据恢复:Talkbox

Talkbox数据恢复&#xff1a;找回珍贵的回忆 在数字化时代&#xff0c;我们的许多珍贵回忆都存储在手机应用程序中&#xff0c;如Talkbox。当意外发生&#xff0c;导致这些回忆丢失时&#xff0c;我们不禁会问&#xff1a;能否找回那些失去的数据&#xff1f;本文将探讨Talkbox…

【随笔】Git 基础篇 -- 拉取数据 git pull(二十八)

&#x1f48c; 所属专栏&#xff1a;【Git】 &#x1f600; 作  者&#xff1a;我是夜阑的狗&#x1f436; &#x1f680; 个人简介&#xff1a;一个正在努力学技术的CV工程师&#xff0c;专注基础和实战分享 &#xff0c;欢迎咨询&#xff01; &#x1f496; 欢迎大…

C++这个编程语言以后会消失吗,就像以前70后学的编程语言?

随着AI自举编程的到来&#xff0c;绝大多数人类编程语言都会消失&#xff0c;只有 Scratch 这类启智语言作为儿童玩具保留下来。目前看来这一天不远了。 AI自举编程首先无需遵循这种可读文本变为二进制操作码的套路&#xff0c;它本身就是二进制的。而后&#xff0c;一旦智能制…

PHP01——php快速入门 之 在Mac上使用phpstudy快速搭建PHP环境

PHP01——php快速入门 之 在Mac上使用phpstudy快速搭建PHP环境 0. 前言1. 下载小皮面板1.1 下载phpstudy&#xff08;小皮面板&#xff09;1.2 启动、简单访问1.2.1 启动Apache1.2.2 访问1.2.3 访问自定义文件或页面 2. 创建网站2.1 创建网站2.2 可能遇到的问题2.2.1 hosts权限…

【k8s】监控与报警(qq邮箱+钉钉):Prometheus + Grafana + Alertmanager(超详细)

【k8s】监控与报警&#xff08;qq邮箱钉钉&#xff09;&#xff1a;Prometheus Grafana Alertmanager&#xff08;超详细&#xff09; 1、部署环境2、基本概念简介2.1、Prometheus简介2.2、Grafana简介2.3、Alertmanager简介2.4、Prometheus GrafanaAlertmanager监控架构 3、…

Mamba论文笔记

Mamba论文 结合序列建模任务通俗地解释什么是状态空间模型&#xff1f;创新点和贡献 为什么Mamba模型擅长捕获long range dependencies&#xff1f; 结合序列建模任务通俗地解释什么是状态空间模型&#xff1f; 状态空间模型&#xff08;State Space Model, SSM&#xff09;是…

Java Web开发问题(二)

一、nginx 1.1、反向代理 在 nginx.conf 配置文件中增加如下配置&#xff1a; 1 server { 2 listen 80; 3 server_name www.123.com; 4 5 location / { 6 proxy_pass http://127.0.0.1:8080; 7 index index.ht…

数据结构之来链表——单链表

什么是单链表&#xff1a; 文字说明&#xff1a; 单链表顾名思义&#xff0c;就是指单项链表&#xff0c;即只有一个方向的链性线性表。 图解&#xff1a; 如下图所示&#xff0c;即为链表&#xff08;DATA为我们自己所定义的数据类型&#xff09;&#xff1a; 单链表的创建&am…

负荷预测 | Matlab基于TCN-GRU-Attention单变量时间序列多步预测

目录 效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab基于TCN-GRU-Attention单变量时间序列多步预测&#xff1b; 2.单变量时间序列数据集&#xff0c;采用前12个时刻预测未来96个时刻的数据&#xff1b; 3.excel数据方便替换&#xff0c;运行环境matlab2023及以…