3D模型处理的并行化

今天我们将讨论如何使用 Python 多进程来处理大量3D数据。 我将讲述一些可能在手册中找到的一般信息,并分享我发现的一些小技巧,例如将 tqdm 与多处理 imap 结合使用以及并行处理存档。

那么我们为什么要诉诸并行计算呢? 使用数据有时会出现与大数据相关的问题。 每次我们遇到 RAM 不适合的数据时,我们都需要逐段处理它。 幸运的是,现代编程语言允许我们生成在多核处理器上完美工作的多个进程(甚至线程)。注意:这并不意味着单核处理器无法处理多处理,这是有关该主题的 Stack Overflow 讨论。

今天我们将尝试计算网格和点云之间的距离这一常见的 3D 计算机视觉任务。 例如,当你需要在所有可用网格中查找定义与给定点云相同的 3D 对象的网格时,可能会遇到此问题。

我们的数据由存储在 .7z 存档中的 .obj 文件组成,这在存储效率方面非常出色。 但是当我们需要访问它的确切部分时,我们应该付出努力。 在这里,我定义了包装 7-zip 存档并提供底层数据接口的类。

from io import BytesIO
import py7zlibclass MeshesArchive(object):def __init__(self, archive_path):fp = open(archive_path, 'rb')self.archive = py7zlib.Archive7z(fp)self.archive_path = archive_pathself.names_list = self.archive.getnames()def __len__(self):return len(self.names_list)def get(self, name):bytes_io = BytesIO(self.archive.getmember(name).read())return bytes_iodef __getitem__(self, idx):return self.get(self.names[idx])def __iter__(self):for name in self.names_list:yield self.get(name)

这个类几乎不依赖 py7zlib 包,它允许我们在每次调用 get 方法时解压缩数据,并为我们提供存档内的文件数量。 我们还定义了 __iter__ ,它将帮助我们像在可迭代对象上一样在该对象上启动多处理映射。

这个定义为我们提供了迭代存档的可能性,但它是否允许我们并行随机访问内容? 这是一个有趣的问题,我在网上没有找到答案,但如果深入研究 py7zlib 的源代码,我们可以回答它。

在这里,我提供了 pylzma 的代码片段:

class Archive7z(Base):def __init__(self, file, password=None):# ...self.files = {}# ...for info in files.files:# create an instance of ArchiveFile that knows location on diskfile = ArchiveFile(info, pos, src_pos, folder, self, maxsize=maxsize)# ...self.files.append(file)# ...self.files_map.update([(x.filename, x) for x in self.files])# method that returns an ArchiveFile from files_map dictionarydef getmember(self, name):if isinstance(name, (int, long)):try:return self.files[name]except IndexError:return Nonereturn self.files_map.get(name, None)class Archive7z(Base):def read(self):# ...for level, coder in enumerate(self._folder.coders):# ...# get the decoder and decode the underlying datadata = getattr(self, decoder)(coder, data, level, num_coders)return data

摘自pylzma源码,省略了很多

我相信从上面的要点可以清楚地看出,只要同时多次读取存档,就没有理由被阻止。

接下来我们快速介绍一下什么是网格和点云。 首先是网格,它们是顶点、边和面的集合。 顶点由空间中的 (x,y,z) 坐标定义,并分配有唯一的编号。 边和面相应地是点对和三元组的组,并使用提到的唯一点 ID 进行定义。 通常,当我们谈论“网格”时,我们指的是“三角形网格”,即由三角形组成的表面。 使用 trimesh 库在 Python 中处理网格要容易得多,例如它提供了在内存中加载 .obj 文件的接口。 要在 Jupyter Notebook 中显示 3D 对象并与之交互,可以使用 k3d 库。

因此,通过以下代码片段,我回答了这个问题:“如何使用 k3d 在 jupyter 中绘制 atrimeshobject?”

import trimesh
import k3dwith open("./data/meshes/stanford-bunny.obj") as f:bunny_mesh = trimesh.load(f, 'obj')plot = k3d.plot()
mesh = k3d.mesh(bunny_mesh.vertices, bunny_mesh.faces)
plot += mesh
plot.display()

k3d 显示的斯坦福兔子网格(不幸的是这里没有响应)

其次,点云,它们是表示空间中物体的 3D 点阵列。 许多 3D 扫描仪生成点云作为扫描对象的表示。 为了演示目的,我们可以读取相同的网格并将其顶点显示为点云。

import trimesh
import k3dwith open("./data/meshes/stanford-bunny.obj") as f:bunny_mesh = trimesh.load(f, 'obj')plot = k3d.plot()
cloud = k3d.points(bunny_mesh.vertices, point_size=0.0001, shader="flat")
plot += cloud
plot.display()

将顶点绘制为点云

k3d绘制的点云

正如上面提到的,3D 扫描仪为我们提供了点云。 假设我们有一个网格数据库,并且希望在数据库中找到与扫描对象(即点云)对齐的网格。 为了解决这个问题,我们可以提出一种简单的方法。 我们将搜索给定点云的点与存档中的每个网格之间的最大距离。 如果对于某些网格来说,1e-4 的距离较小,我们会认为该网格与点云对齐。

最后,我们来到了多处理部分。 请记住,我们的存档有大量文件可能无法同时放入内存中,我们更喜欢并行处理它们。 为了实现这一点,我们将使用多处理池,它使用 map 或 imap/imap_unordered 方法处理用户定义函数的多次调用。 map 和 imap 之间影响我们的区别在于, map 在发送到工作进程之前将可迭代对象转换为列表。 如果存档太大而无法写入 RAM,则不应将其解压到 Python 列表中。 在另一种情况下,它们的执行速度相似。

[Loading meshes: pool.map w/o manager] Pool of 4 processes elapsed time: 37.213207403818764 sec
[Loading meshes: pool.imap_unordered w/o manager] Pool of 4 processes elapsed time: 37.219303369522095 sec

在上面你可以看到从适合内存的网格存档中进行简单读取的结果。

使用 imap 更进一步。 让我们讨论如何实现找到靠近点云的网格的目标。 这是数据,我们有来自斯坦福模型的 5 个不同的网格。 我们将通过向斯坦福兔子网格的顶点添加噪声来模拟 3D 扫描。

import numpy as np
from numpy.random import default_rngdef normalize_pc(points):points = points - points.mean(axis=0)[None, :]dists = np.linalg.norm(points, axis=1)scaled_points = points / dists.max()return scaled_pointsdef load_bunny_pc(bunny_path):STD = 1e-3 with open(bunny_path) as f:bunny_mesh = load_mesh(f)# normalize point cloud scaled_bunny = normalize_pc(bunny_mesh.vertices)# add some noise to point cloudrng = default_rng()noise = rng.normal(0.0, STD, scaled_bunny.shape)distorted_bunny = scaled_bunny + noisereturn distorted_bunny

当然,我们之前对下面的点云和网格顶点进行了标准化,以在 3D 立方体中缩放它们。

为了计算点云和网格之间的距离,我们将使用 igl。 为了最终确定,我们需要编写一个将在每个进程及其依赖项中调用的函数。 让我们用下面的片段来总结一下。

import itertools
import timeimport numpy as np
from numpy.random import default_rngimport trimesh
import igl
from tqdm import tqdmfrom multiprocessing import Pooldef load_mesh(obj_file):mesh = trimesh.load(obj_file, 'obj')return meshdef get_max_dist(base_mesh, point_cloud):distance_sq, mesh_face_indexes, _ = igl.point_mesh_squared_distance(point_cloud,base_mesh.vertices,base_mesh.faces)return distance_sq.max()def load_mesh_get_distance(args):obj_file, point_cloud = args[0], args[1]mesh = load_mesh(obj_file)mesh.vertices = normalize_pc(mesh.vertices)max_dist = get_max_dist(mesh, point_cloud)return max_distdef read_meshes_get_distances_pool_imap(archive_path, point_cloud, num_proc, num_iterations):# do the meshes processing within a poolelapsed_time = []for _ in range(num_iterations):archive = MeshesArchive(archive_path)pool = Pool(num_proc)start = time.time()result = list(tqdm(pool.imap(load_mesh_get_distance,zip(archive, itertools.repeat(point_cloud)),), total=len(archive)))pool.close()pool.join()end = time.time()elapsed_time.append(end - start)print(f'[Process meshes: pool.imap] Pool of {num_proc} processes elapsed time: {np.array(elapsed_time).mean()} sec')for name, dist in zip(archive.names_list, result):print(f"{name} {dist}")return resultif __name__ == "__main__":bunny_path = "./data/meshes/stanford-bunny.obj"archive_path = "./data/meshes.7z"num_proc = 4num_iterations = 3point_cloud = load_bunny_pc(bunny_path)read_meshes_get_distances_pool_no_manager_imap(archive_path, point_cloud, num_proc, num_iterations)

这里 read_meshes_get_distances_pool_imap 是一个核心函数,其中完成了以下操作:

  • MeshesArchive 和 multiprocessing.Pool 已初始化
  • 应用 tqdm 来监视池进度,并手动完成整个池的分析
  • 执行结果的输出

请注意我们如何将参数传递给 imap,使用 zip(archive, itertools.repeat(point_cloud)) 从 archive 和 point_cloud 创建新的可迭代对象。 这使我们能够将点云数组粘贴到存档的每个条目,从而避免将存档转换为列表。

执行结果如下所示:

100%|####################################################################| 5/5 [00:00<00:00,  5.14it/s]
100%|####################################################################| 5/5 [00:00<00:00,  5.08it/s]
100%|####################################################################| 5/5 [00:00<00:00,  5.18it/s]
[Process meshes: pool.imap w/o manager] Pool of 4 processes elapsed time: 1.0080536206563313 sec
armadillo.obj 0.16176825266293382
beast.obj 0.28608649819198073
cow.obj 0.41653845909820164
spot.obj 0.22739556571296735
stanford-bunny.obj 2.3699851136074263e-05

我们可以发现斯坦福兔子是最接近给定点云的网格。 还可以看出,我们没有使用大量数据,但我们已经证明,即使存档中有大量网格,该解决方案也能发挥作用。

多重处理使数据科学家不仅在 3D 计算机视觉方面而且在机器学习的其他领域都取得了出色的表现。 理解并行执行比循环内执行要快得多,这一点非常重要。 尤其是当算法编写正确时,差异变得非常显着。 大量数据揭示的问题如果没有创造性的方法来利用有限的资源就无法解决。 幸运的是,Python 语言及其丰富的库可以帮助我们数据科学家解决此类问题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/623644.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

javaWeb项目-游泳馆管理系统功能介绍

项目关键技术 开发工具&#xff1a;IDEA 、Eclipse 编程语言: Java 数据库: MySQL5.7 框架&#xff1a;ssm、Springboot 前端&#xff1a;Vue、ElementUI 关键技术&#xff1a;springboot、SSM、vue、MYSQL、MAVEN 数据库工具&#xff1a;Navicat、SQLyog 1、SSM框架 开发信息…

关于Qt主窗口的菜单部件

前言 在介绍主窗口的两大部件之前&#xff0c;我们要先知道关于主窗口的一些知识。 主窗口 一个主窗口可以没有菜单条、工具条、状态条&#xff0c;但必须设置中心部件。在 Q 生成的 C头文件 ui_mainwindow.h 代码中,我们可以看到以下代码: centralWidget new Qwidget(MainWi…

无效的标记: --release

maven编译项目时候出现&#xff1a;无效的标记: --release 项目背景 介绍一下项目背景&#xff1a; java17 SpringBoot&#xff1a;3.2.0 SpringCloud&#xff1a; 2023.0.0 之前一直用java8开发项目 问题原因 maven所使用的jdk版本和idea所使用的jdk版本不一致导致的。…

GitHub repository - commits - branches - releases - contributors

GitHub repository - commits - branches - releases - contributors 1. commits2. branches3. releases4. contributorsReferences 1. commits 在这里可以查看当前分支的提交历史。左侧的数字表示提交数。 2. branches 可以查看仓库的分支列表。左侧的数字表示当前拥有的分…

立迈胜NGM18系列一体化电动夹爪全新升级:高度集成、更大负载扭矩

随着工业自动化的不断发展和深入&#xff0c;电动夹爪作为工业自动化生产线上的重要部件&#xff0c;经常在汽车制造、食品加工、电子电器、物流和医疗等行业中看到它的身影&#xff0c;所以其性能直接关系到生产效率与产品质量。 在实际应用中&#xff0c;我们常会遇到很多问…

oracle 19c数据库W00n进程使用很多PGA内存资源的分析

今天&#xff0c;客户反馈测试环境的数据库PGA资源不足&#xff0c;报错ORA-04036: 实例使用的 PGA 内存超出 PGA_AGGREGATE_LIMIT&#xff1b;分析是多个W00n进程使用大量PGA-触发了BUG&#xff0c;对应解决办法就是打补丁。&#xff08;民间办法就是KILL进程、重启数据库&…

激光车型识别仪:交通管理领域的技术革新与应用探索

激光车型识别仪&#xff1a;交通管理领域的技术革新与应用探索 在交通管理领域&#xff0c;随着技术的不断进步&#xff0c;各种智能化设备逐渐崭露头角。其中&#xff0c;激光车型识别仪作为一种基于激光技术的车辆识别设备&#xff0c;正以其高精度、强抗干扰能力等特点&…

智能助手大比拼!5款热门思维导图软件细致评估!

思维导图是一种创造性的方法&#xff0c;集思广益&#xff0c;寻找不同想法之间的联系。如果你做得好&#xff0c;你可以为难题提出新的想法和解决方案&#xff0c;总结一篇文章或演示稿&#xff0c;让你的想法井然有序。在数字时代&#xff0c;纸质思维导图存在不能随意更改、…

C语言练习:变种水仙花数

今天让我们来看看变种的水仙花吧&#xff0c;话不多说&#xff0c;直入主题。 题目描述 变种水仙花数- Lily Number: 把任意的数字&#xff0c;从中间拆分成两个数字&#xff0c;比如1461可 以拆分成(1和461)&#xff0c;(14和61)&#xff0c;(146和1),如果所有拆分后的乘积之和…

SD-WAN企业组网:多样化的应用场景

随着企业网络环境的快速发展&#xff0c;SD-WAN技术正成为实现站点间网络互通的关键所在。它不仅支持企业站点对因特网、SaaS云应用和公有云等多种业务的高效访问&#xff0c;更能满足多样化的业务需求。深入探讨SD-WAN的组网应用场景&#xff0c;我们能够发现其广泛的适用性和…

Springboot+Vue项目-基于Java+MySQL的房产销售系统(附源码+演示视频+LW)

大家好&#xff01;我是程序猿老A&#xff0c;感谢您阅读本文&#xff0c;欢迎一键三连哦。 &#x1f49e;当前专栏&#xff1a;Java毕业设计 精彩专栏推荐&#x1f447;&#x1f3fb;&#x1f447;&#x1f3fb;&#x1f447;&#x1f3fb; &#x1f380; Python毕业设计 &…

【Shell语言学堂】sed命令最全详解

三剑客之sed linux sed命令详解1.简介2.定址3.sed选项4.正则表达式元字符5.具体应用1、行打印2、替换指定文本3、插入文本行&#xff0c;追加文本行4、sed命令的删除功能5、其他命令6、sed 的分组替换功能7、sed -r或者sed -E linux sed命令详解 CSDN划过手的泪滴t 1.简介 se…