YOLOv8最新改进系列:融合DySample超轻量动态上采样算子,低延迟、高性能,目前最新上采样方法!!!遥遥领先!

YOLOv8最新改进系列:融合DySample超轻量动态上采样算子,低延迟、高性能,目前最新上采样方法!!!遥遥领先!

DySample超轻量动态上采样算子全文戳这!here!

详细的改进教程以及源码,戳这!戳这!!戳这!!!B站:AI学术叫叫兽 源码在相簿的链接中,动态中也有链接,感谢支持!祝科研遥遥领先!

YOLOv8最新改进系列:融合DySample超轻量动态上采样算子,低延迟、高性能,目前最新上采样方法!!!遥遥领先!

  • YOLOv8最新改进系列:融合DySample超轻量动态上采样算子,低延迟、高性能,目前最新上采样方法!!!遥遥领先!
  • 摘要
  • 1 简介
  • 2 相关工作
  • 3.学习采样和上采样
  • 4 结论
  • 9 修改步骤!
    • 4.1 修改YAML文件
    • 4.2 新建.py
    • 4.3 修改tasks.py
  • 三、验证是否成功即可


arge Separable Kernel Attention: Rethinking the
Large Kernel Attention Design in CNN(提出原文戳这)

详细的改进教程以及源码,戳这!戳这!!戳这!!!B站:AI学术叫叫兽 源码在相簿的链接中,动态中也有链接,感谢支持!祝科研遥遥领先!
截止到发稿时,B站YOLOv9最新改进系列的源码包,已更新了11种的改进!自己排列组合2-4种后,考虑位置不同后可排列组合上千种!!专注AI学术,关注B站博主:Ai学术叫叫兽er!

摘要

我们介绍DySample,一个超轻量和有效的动态上采样器。虽然最近基于内核的动态上采样器(如CARAFE、FADE和SAPA)的性能提升令人印象深刻,但它们带来了大量的工作负载,主要是由于耗时的动态卷积和用于生成动态内核的额外子网络。此外,对高特征指导的需求在某种程度上限制了它们的应用场景。为了解决这些问题,我们绕过动态卷积并从点采样的角度制定上采样,这更节省资源,并且可以很容易地使用PyTorch中的标准内置函数实现。我们首先展示了一个朴素的设计,然后演示了如何逐步加强其上采样行为,以实现我们的新上采样器DySample。与以前基于内核的动态上采样器相比,DySample不需要定制CUDA包,并且具有更少的参数、FLOPs、GPU内存和延迟。除了轻量级的特点,DySample在五个密集预测任务上优于其他上采样器,包括语义分割、目标检测、实例分割、全视分割和单目深度估计。

1 简介

特征上采样是密集预测模型中逐渐恢复特征分辨率的关键因素。最常用的上采样器是最近邻(NN)和双线性插值,它们遵循固定的规则来插值上采样值。为了增加灵活性,在一些特定任务中引入了可学习的上采样器,例如,实例分割中的去卷积[13]和图像超分辨率中的像素混洗场景(高分辨率功能必须可用)。与早期的普通网络不同,多尺度特征经常用于现代架构中;因此,作为上采样器输入的高分辨率特征可能不是必要的。例如,在特征金字塔网络(FPN)[23]中,高分辨率特征将在上采样后添加到低分辨率特征中。因此,我们认为设计良好的单输入动态上采样器就足够了。考虑到动态卷积引入的繁重工作量,我们绕过基于内核的范例并返回到上采样的本质,即,点采样,以重新制定上采样过程。具体来说,我们假设输入的功能是内插到一个连续的双线性插值,并产生内容感知的采样点重新采样的连续地图。从这个角度来看,我们首先提出了一个简单的设计,其中逐点偏移由线性投影生成,并用于使用PyTorch中的网格采样函数重新采样点值。然后,我们展示了如何通过i)控制初始采样位置,ii)调整偏移量的移动范围,iii)将上采样过程划分为几个独立的组来逐步改进它,并获得我们的新上采样器DySample。在每一步,我们解释为什么需要调整,并进行实验,以验证性能增益。与其他动态上采样器相比,DySample i)不需要高分辨率的引导功能作为输入,ii)也不需要PyTorch以外的任何额外CUDA包,特别是iii)具有更少的推理延迟,内存占用,FLOP和参数数量,如图1和图8所示。例如,在以MaskFormer-SwinB [8]为基线的语义分割上,DySample比CARAFE的性能提高了46%,但只需要CARAFE的3%的参数和20%的FLOP。由于高度优化的PyTorch内置函数,DySample的推理时间也接近双线性插值(6.2 ms vs. 1.6 ms,当对256 × 120 × 120特征图进行上采样时)。除了这些吸引人的轻量级特性外,DySample在五个密集预测任务(包括语义分割、对象检测、实例分割、全景分割和单眼深度估计)上的性能优于其他上采样器。简而言之,我们认为DySample可以安全地取代现有密集预测模型中的NN/双线性插值,不仅是有效性,而且是效率。

图1.比较不同上采样器的性能、推理速度和GFLOP。圆圈的大小表示GFLOP的成本。通过对尺寸为256×120×120的特征图进行×2上采样来测试推理时间。使用SegFormer-B1 [40]在ADE 20 K数据集[42]上测试mIoU性能和其他GFLOP。
图1.比较不同上采样器的性能、推理速度和GFLOP。圆圈的大小表示GFLOP的成本。通过对尺寸为256×120×120的特征图进行×2上采样来测试推理时间。使用SegFormer-B1 [40]在ADE 20 K数据集[42]上测试mIoU性能和其他GFLOP。

2 相关工作

我们回顾了深度学习中的密集预测任务、特征上采样算子和动态采样。密集预测任务。密集预测是指需要逐点标签预测的任务的分支,例如语义/实例/全景分割[2,39,40,8,7,13,11,16,19],对象检测[33,4,24,36]和单眼深度估计[38,18,3,21]。不同的任务往往表现出不同的特点和困难。例如,在语义分割中很难预测平滑的内部区域和尖锐的边缘,在实例感知任务中也很难区分不同的对象。在深度估计中,具有相同语义含义的像素可能具有相当不同的深度,反之亦然。人们经常需要为不同的任务定制不同的架构。虽然模型结构各不相同,但上采样算子是密集预测模型中的重要组成部分。由于主干通常输出多尺度特征,因此低分辨率特征需要上采样到更高的分辨率。因此,一个轻量级的,有效的上采样器将有利于许多密集的预测模型。我们将展示我们新的上采样器设计为SegFormer [40]和MaskFormer [8]带来了一致的性能提升,用于语义分割,用于对象检测的Faster R-CNN [33],例如分割的Mask R-CNN [13],用于全景分割的Panoptic FPN [16],以及用于单目深度估计的DepthFormer [21],同时引入可忽略不计的工作量。功能上采样。常用的特征上采样器是NN和双线性插值。它们应用固定的规则来插值低分辨率特征,忽略了特征图中的语义含义。SegNet [2]在语义分割中采用了最大解池来保留边缘信息,但噪声和零填充的引入破坏了平滑区域的语义一致性。与卷积类似,一些可学习的上采样器在上采样中引入了可学习的参数。例如,反卷积以卷积的相反方式对特征进行上采样。Pixel Shuffle [34]使用卷积提前增加通道数,然后重塑特征图以提高分辨率。最近,一些动态上采样算子进行内容感知上采样。CARAFE [37]使用子网络来生成内容感知的动态卷积核来重新组装输入特征。FADE [29]提出将高分辨率和低分辨率特征联合收割机来生成动态内核,以便使用高分辨率结构。SAPA [30]进一步引入了点关联的概念,并计算高分辨率和低分辨率特征之间的相似性感知内核。作为模型插件,这些动态上采样器增加了比预期更多的复杂性,特别是对于需要高分辨率特征输入的FADE和SAPA。因此,我们的目标是提供一个简单,快速,低成本和通用的上采样器,同时保留动态上采样的有效性特征图,作为标准网格采样的替代。Dai等人。[9]和Zhu等人。[43]提出了可变形卷积网络,其中标准卷积中的矩形窗口采样被移位点采样取代。Deformable DETR [44]遵循这种方式,对与某个查询相关的关键点进行采样,以进行可变形注意。当图像被下采样到低分辨率时,也会发生类似的做法,用于内容感知的图像增强,也称为缝刻[1]。例如,在一个示例中,Zhang等人。[41]提出学习使用显着性指导对图像进行下采样,以保留原始图像的更多信息,Jin等人。[15]还设置了一个可学习的变形模块来对图像进行下采样。与目前基于核的上采样器不同,我们将上采样的本质解释为点重采样。因此,在特征上采样中,我们倾向于遵循与上述工作相同的精神,并使用简单的设计来实现强大而高效的动态上采样器。

3.学习采样和上采样

详细的方法介绍看全文即可,链接在文首!

4 结论

我们提出了DySample,一个快速,有效,通用的动态上采样器。与一般的基于核函数的动态上采样不同,DySample是从点采样的角度进行设计的。我们从一个简单的设计开始,并展示如何从我们对上采样的深刻见解中逐步提高其性能。与其他动态上采样器相比,DySample不仅报告了最佳性能,而且摆脱了定制的CUDA包,消耗了最少的计算资源,在延迟,训练内存,训练时间,GFLOPs和参数数量方面表现出优越性。对于未来的工作,我们计划将DySample应用于低级别任务,并研究上采样和下采样的联合建模。

9 修改步骤!

4.1 修改YAML文件

详细的改进教程以及源码,戳这!戳这!!戳这!!!B站:AI学术叫叫兽 源码在相簿的链接中,动态中也有链接,感谢支持!祝科研遥遥领先!

4.2 新建.py

详细的改进教程以及源码,戳这!戳这!!戳这!!!B站:AI学术叫叫兽er 源码在相簿的链接中,动态中也有链接,感谢支持!祝科研遥遥领先!

4.3 修改tasks.py

详细的改进教程以及源码,戳这!戳这!!戳这!!!B站:AI学术叫叫兽er 源码在相簿的链接中,动态中也有链接,感谢支持!祝科研遥遥领先!

三、验证是否成功即可

执行命令

python train.py

改完收工!
关注B站:Ai学术叫叫兽er
从此走上科研快速路
遥遥领先同行!!!!

详细的改进教程以及源码,戳这!戳这!!戳这!!!B站:AI学术叫叫兽er 源码在相簿的链接中,动态中也有链接,感谢支持!祝科研遥遥领先!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/624022.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

HarmonyOS开发实例:【分布式邮件】

概述 基于TS扩展的声明式开发范式编程语言编写的一个分布式邮件系统,可以由一台设备拉起另一台设备,每次改动邮件内容,都会同步更新两台设备的信息。效果图如下: 搭建OpenHarmony开发环境 完成本篇Codelab我们首先要完成开发环境…

NL2SQL进阶系列(5):论文解读业界前沿方案(DIN-SQL、C3-SQL、DAIL-SQL、SQL-PaLM)、新一代数据集BIRD-SQL解读

NL2SQL进阶系列(5):论文解读业界前沿方案(DIN-SQL、C3-SQL、DAIL-SQL)、新一代数据集BIRD-SQL解读 NL2SQL基础系列(1):业界顶尖排行榜、权威测评数据集及LLM大模型(Spider vs BIRD)全面对比优劣分析[Text2…

数据结构学习之路--深入探索栈的核心要点(附C源码)

哈喽~大家!今天我们来学习栈的特别节目,精彩马上开始~ 目录 前言 一、栈 1 栈的概念 2 栈的结构 3 栈的实现 3.1 栈的定义 3.2 栈的初始化 3.3 入栈 3.4 出栈 3.5 取栈顶元素 3.6 判断栈是否为空 3.7 栈的大小 3.8 栈的销毁 二、源代…

掀起区块链开发狂潮!Scaffold-eth带你一键打造震撼DApp

文章目录 前言一、Scaffold-eth是什么?二、安装和配置1.准备工作2.安装3.配置开发环境 三、进阶使用1.放入自己的合约2.部署运行 总结 前言 前面的文章传送🚪:hardhat入门 与 hardhat进阶 在之前的文章中,我们已经探讨了使用Har…

输入变量数据通过隶属函数从真实论域转变到模糊论域的示例

1. 示例1 假设我们有一个关于顾客满意度的调查,调查数据是顾客对某项服务的评分,评分范围是1到5分。现在,我们希望对这些评分进行模糊化处理,以便更好地理解和解释顾客的满意度。 首先,我们定义三个模糊集合&#xf…

边缘计算网关主要有哪些功能?-天拓四方

随着物联网(IoT)的快速发展和普及,边缘计算网关已经成为了数据处理和传输的重要枢纽。作为一种集成数据采集、协议转换、数据处理、数据聚合和远程控制等多种功能的设备,边缘计算网关在降低网络延迟、提高数据处理效率以及减轻云数…

Python 入门指南(五)

原文:zh.annas-archive.org/md5/97bc15629f1b51a0671040c56db61b92 译者:飞龙 协议:CC BY-NC-SA 4.0 第十六章:Python 中的对象 因此,我们现在手头上有一个设计,并且准备将该设计转化为一个可工作的程序&a…

C++从入门到精通——类和对象(下篇)

1. 再谈构造函数 1.1 构造函数体赋值 在创建对象时,编译器通过调用构造函数,给对象中各个成员变量一个合适的初始值。 class Date { public:Date(int year, int month, int day){_year year;_month month;_day day;} private:int _year;int _mont…

spring webflux 小结

一、WebFlux 简介 WebFlux 是 Spring Framework5.0 中引入的一种新的反应式Web框架。通过Reactor项目实现Reactive Streams规范,完全异步和非阻塞框架。本身不会加快程序执行速度,但在高并发情况下借助异步IO能够以少量而稳定的线程处理更高的吞吐&…

QT creator 代码中有中文,提示常量中有换行符解决方案

QT creator 代码中有中文,提示常量中有换行符解决方案 参考视频问题问题解决 参考 感谢感谢,非常感谢,有你,让Qt不再困难,困扰我四年的问题解决了!!! https://blog.csdn.net/m0_45866718/article/details/112389513 视频 https://www.bilibili.com/video/BV1Fp4…

Towards Street-Level Client-Independent IP Geolocation(2011年)(第一部分)

被引次数:306 Wang Y, Burgener D, Flores M, et al. Towards {Street-Level}{Client-Independent}{IP} Geolocation[C]//8th USENIX Symposium on Networked Systems Design and Implementation (NSDI 11). 2011. Abstract 一个高度精确的客户端独立的地理定位服务将是互联…

MGRE环境下的ospf实验

MGRE环境下的ospf实验 一.拓扑图 二.实验步骤 1.分配各路由网段IP [R1]int g 0/0/0 [R1-GigabitEthernet0/0/0]ip address 16.0.0.1 24 [R1-GigabitEthernet0/0/0]int g 0/0/1 [R1-GigabitEthernet0/0/1]ip address 116.0.0.1 24[R2]int g 0/0/0 [R2-GigabitEthernet0/0/0]…