机器学习和深度学习--李宏毅(笔记与个人理解)Day17

Day 17Convolutional Neyral Network (CNN)

卷积神经网络一般都用在image 上面比较多一些,所以课程的例子大多数也都是image

Image Classification

the same size

image-20240412211301843

how about for pc?

image-20240412211342138

这里对于tensor 张量这个概念,我还是比较奇怪,在我认为一个矩阵也可以表示三维的空间;为什么引入tensor这个概念;

听完那个课程我悟了,tensor作为多维数组来说,更具有高维空间的特性;就拿上面的图片举例子,extremely case 我们取一维向量来表示(铺开),这样就会丢失一些空间的信息,例如绿色的格子和蓝色的某个格子其实是垂直的,仅仅相差一个垂直距离,但是展开为一根棍就很难找到这种关联

向量中某一个格子的数值表示该种颜色的强度

image-20240412211930832

好了我猜你紧接着就要说,啊啊啊这个什么weight 太大了,更新一次太麻烦啦巴拉巴拉的

Do we need “fully connected” in image processing ?

so we need some observations

Obervation1

image-20240412212206562

so not whole image ,but some patternsimage-20240412212406363

Simplification 1

image-20240412212555144

image-20240412212633482 image-20240412212645343 image-20240412213701721 image-20240412213728428

Typical Setting

image-20240412214032754

Obervation 2

image-20240412214152444
Simplification 2 sharing parameters
image-20240412214342635

Typical

image-20240412214444443

有了两种简化的方式了,我们来总结一下我们学到了什么

image-20240413201443821

CNN 的model 的bias比较大

Fully connected Layer jack of all trades master of none

Another Story

image-20240413201828912

image-20240413201924317 image-20240413202026650 image-20240413202045005 image-20240413202106520 image-20240413202133876

image-20240413202256514

这张ppt好好理解一下, 理解不了的话我给你讲讲:

首先按照Convolution 分为上下两个 part 哈,上面那个是由64个fitter (高度/厚度 =1, 因为原始图像的channel =1 是黑白图像,这里我们考虑typical的情况) 分别对原image做卷积得到的;每一个高度可以作为一个feature Map;ok ,然后我们知道 RGB 其实也是一个图像的三个channel 三个 feature Map;那么我们自然而然的认为这个厚度为64的feature map 叠起来的厚吐司 也是一个64channel 的图像;迭代为原始图像,那么下一次进行卷积的时候我们就需要64个厚度为64的fitter,也就是下面的两个64 的不同含义~ ok,打完收工

一个问题,如果fitter 一直等于 3*3 会不会严重丢失全局信息?为什么?

  • 我认为和stride有关,一直有重叠
  • 更直接的解释 从 3 * 3 到 5 * 5
image-20240413203018839

殊途同归

image-20240413203232320

boy 聪明的,比较颜色就好~ 要学会适度自学哦

image-20240413203338279

image-20240413203429558

Observation 3

image-20240413203530845
Simpification 3(Pooling)
image-20240413203649322 image-20240413203928352

subSampling 会丢失一定的信息,随着 计算机上升,下采样逐渐式微

The whole CNN……

image-20240413204126742

Flatten 拉直

Application-- 阿尔法狗

image-20240413204317466

so why CNN?

image-20240413204451266

当成一个图片,然后48个channel 表示该点处的48种情况

image-20240413204618575 image-20240413204912641 image-20240413204928830

more thinking :

CNN 好像没有办法处理影响放大缩小,或者反转的情况;so we need data augmentation ;

Spatial Transformer Layer

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/625129.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JDK5.0新特性

目录 1、JDK5特性 1.1、静态导入 1.2 增强for循环 1.3 可变参数 1.4 自动装箱/拆箱 1.4.1 基本数据类型包装类 1.5 枚举类 1.6 泛型 1.6.1 泛型方法 1.6.2 泛型类 1.6.3 泛型接口 1.6.4 泛型通配符 1、JDK5特性 JDK5中新增了很多新的java特性,利用这些新…

5.10 mybatis之useActualParamName作用

文章目录 1. useActualParamNamefalse1.1 单个参数映射1.2 多个数1.3 param注解 2. useActualParamNametrue useActualParamName官方解释:允许使用方法签名中的名称作为语句参数名称。 为了使用该特性,你的项目必须采用 Java 8 编译,并且加上…

Linux内核之aligned用法实例(四十七)

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 优质专栏:多媒…

KaiwuDB CTO 魏可伟:AIoT,用行业定义数据库

4月12日,由中国 DBA 联盟(ACDU)与墨天轮社区联合主办的第十三届数据技术嘉年华(DTC 2024)于北京盛大召开。KaiwuDB CTO 魏可伟受邀发表《智创当下,KaiwuDB 从多模到 AI 的探索实践》主题演讲,向…

看图找LOGO,基于YOLOv8全系列【n/s/m/l/x】参数模型开发构建生活场景下的商品商标LOGO检测识别系统

日常生活中,我们会看到眼花缭乱的各种各样的产品logo,但是往往却未必能认全,正因为有这个想法,这里我花费了过去近两周的时间采集和构建了包含50种商品商标logo的数据集,基于YOLOv8全系列的参数模型开发构建了对应的检…

2016NOIP普及组真题 1. 金币

线上OJ&#xff1a; 一本通&#xff1a;http://ybt.ssoier.cn:8088/problem_show.php?pid1969 核心思想&#xff1a; 解法1、由于数据量只有 10000 天&#xff0c;估可以采用 模拟每一天 的方式。 #include <bits/stdc.h> using namespace std;int k 0;int main() {i…

地质灾害监测预警系统:科技守护,构筑智能预警屏障

随着全球气候变化和人为活动的加剧&#xff0c;地质灾害频繁发生&#xff0c;给人们的生命财产安全带来了严重威胁。为了降低地质灾害带来的损失&#xff0c;地质灾害监测预警系统应运而生。本文将为您详细介绍地质灾害监测预警系统的原理、功能以及在实际应用中的效果。 一、地…

如何从零开始创建React应用:简易指南

&#x1f31f; 前言 欢迎来到我的技术小宇宙&#xff01;&#x1f30c; 这里不仅是我记录技术点滴的后花园&#xff0c;也是我分享学习心得和项目经验的乐园。&#x1f4da; 无论你是技术小白还是资深大牛&#xff0c;这里总有一些内容能触动你的好奇心。&#x1f50d; &#x…

C#通用类库封装实战

数据库查询 特性方式获取数据库列的别名 数据库更新 使用简单工厂配置的方式

企业邮箱迁移是什么?如何通过IMAP/POP协议进行邮箱迁移?

使用公司邮箱工作的过程中&#xff0c;公司可能遇到公司规模的扩大或技术架构升级&#xff0c;可能要换公司邮箱。假如马上使用新的公司邮箱&#xff0c;业务处理要被终断。企业邮箱转移是公司更换邮箱不可或缺的一步&#xff0c;不仅是技术操作&#xff0c;更是企业信息安全、…

【央国企专场】——军工研究所

研究所目录 一、企业概述1.1 中国航天1.2 中国电科1.3 中国船舶1.4 中国兵器 二、招聘信息2.1 中国航天2.2 中国电科2.3 中国船舶2.4 中国兵器 一、企业概述 在校招中会有很多企业来学校开宣讲会&#xff0c;其中就有许多广为人知的军工研究所&#xff0c;比如&#xff1a;中国…