AI抠图使用指南:Stable Diffusion WebUI Rembg实用技巧

 

抠图是图像处理工具的一项必备能力,可以用在重绘、重组、更换背景等场景。最近我一直在探索 Stable Diffusion WebUI 的各项能力,那么 SD WebUI 的抠图能力表现如何呢?这篇文章就给大家分享一下。

安装插件

作为一个生成式AI,SD本身并没有精细的抠图控制能力,它需要借助插件来实现。

这里我们使用 stable-diffusion-webui-rembg 这个插件,插件安装成功后,会出现在“高清化”这个页面的底部。

安装方法一

适合网络访问各种资源比较畅通的同学。

插件地址:GitHub - AUTOMATIC1111/stable-diffusion-webui-rembg: Removes backgrounds from pictures. Extension for webui.

直接在 Stable Diffusion WebUI 中通过网址安装,操作步骤如下图所示:

第5点指示插件已经安装成功,只需要在“已安装”页面中重启SD WebUI就可以了。

实际抠图时,插件还会根据选择的抠图算法自动下载相关的模型,第一次使用某个算法抠图时等待的时间会长一点。

安装方法二

适合访问外网不怎么方便的同学。

先通过别的工具,比如迅雷下载到本地,然后再部署到相应的目录。

插件地址:GitHub - AUTOMATIC1111/stable-diffusion-webui-rembg: Removes backgrounds from pictures. Extension for webui.

算法模型地址:GitHub - danielgatis/rembg: Rembg is a tool to remove images background

或者下载我已经打包好的文件,关注公众号:萤火遛AI,发消息:抠图,即可获取相关文件。

stable-diffusion-webui-rembg.zip 是插件程序,解压后放到 stable-diffusion-webui/extensions 目录。

u2net.zip 是算法模型文件,解压后放到当前用户的临时目录:

  • Windows是:C:\Users\{你登录的Windows用户名}\.u2net
  • Linux是:/root/.u2net/

如果部署在云服务器,需要先上传zip压缩文件,再解压到指定的目录。参考解压指令:

unzip -o /root/autodl-tmp/stable-diffusion-webui-rembg.zip -d /root/stable-diffusion-webui/extensions/stable-diffusion-webui-rembg/
unzip -o /root/autodl-tmp/u2net.zip -d /root/.u2net/

安装完毕之后,记得重启SD。

使用rembg

基本使用

点击“高清化”页签,上传要抠图的照片,“Remove background”这里选择抠图算法,最后点击“生成”。

看看默认的抠图效果:头发这里还有些底色没去掉,这部分和背景有些交错,算法不能很好的识别。

注意人像周围黑色的部分实际上都是透明的,我们把这张图片放到白色的背景中人像周围就是白色了。

我们把这个“Alpha matting”勾上,然后会出来几个选项,把“Erode size”的值改为“15”,它可以优化前景图边缘的分割。

重新生成,看看这次的结果,头发这块基本上看不出来之前的底色了,但是衣领这里有些模糊了。我尝试了不同的参数,也没能达到完美。或许把图片放到PS中再处理下是个正确的方法,以结果为导向,不能死抱着AI不放,有兴趣的可以试试。

参数介绍

上面做了一个基本的演示,但是这些参数我们如何配置才能发挥最好的效果呢?这一小节就来看看这些参数的定义。

先看看这几个算法模型:

  • u2net:通用的的预训练模型,通常用这个就行。
  • u2netp:u2net的轻量级版本。
  • u2net_human_seg:专门针对人像分割的预训练模型,只是分割人像时建议使用。
  • u2net_cloth_seg:专门从人像上抠衣服的预训练模型,它会把衣服分成三部分:上半身、下半身和全身。
  • silueta:和u2net相同,但是大小减少到43Mb,方便在小内存机器上使用。
  • isnet-general-use :一个新的通用的预训练模型。
  • isnet-anime:专门针对动画人物的高精度分割。

再看看它的两个选项:

  • Alpha matting:Alpha遮罩,这是一个比较专业的图像处理术语。在图像处理中,有一个东西用来表示图像中每个像素点的透明度,这个东西称为Alpha通道;然后Alpha遮罩利用Alpha通道来控制图像的透明度,从而达到隐藏或显示某些部分的目的;在抠图这里就是努力让前景部分都显示出来,让背景部分都变透明。这个选项有三个参数,用来控制抠图的效果,我们看下:
    • Erode size:Alpha抠图腐蚀尺寸,通过在图像中构建一个长宽为这个值的矩形进行腐蚀。太小了前景和背景分离不彻底,边缘有交叉;太大了前景和背景会腐蚀的太多,边缘缺损明显。
    • Foreground threshold:前景图像的阈值,值过小背景可能被识别为前景,值过大前景可能被识别为背景。
    • Background threshold:背景图像的阈值,值小了前景可能被识别为背景,值大了背景可能识别为前景。

使用Alpha遮罩时可以初始用这几个经验值:(15, 220, 100),具体参数值再根据实际情况进行调整。

  • Return mask:返回抠图的蒙版图,下面马上就会介绍它的用法和用途。

使用蒙版

这一小节以更换图片背景为例,演示蒙版的用法。具体想法是生成一张马斯克登陆火星遭遇外星人的照片。

生成蒙版

只要在生成时勾选上“Return mask”,最终输出图片就会变成蒙版图。

如下图所示,可以看到人物变成了白色的蒙版,我们把这个蒙版图片先保存到本机,后面马上要用。

更换背景

在“图生图”中打开“局部绘制(上传蒙版)”。这里需要上传两张照片,一张原图,一张人物的蒙版图。

图生图的具体参数如下:

提示词:(the desert), ((night)), dim sun, (stargate), a man in a suit and white shirt smiling for a picture, a alien standing in the distance, digital painting, stargatejackal,surrealistic, hdri, smooth, sharp focus, illustration, fantasy, intricate, elegant, highly detailed, 8k <lora:sgasgard_v1:1>

反向提示词:EasyNegative, moon

缩放模式:填充,因为我想调整下图片的宽高比到 16:9,原图没这么宽,所以需要填充新扩展的空间。

蒙版模式:绘制非蒙版内容,在“局部绘制(上传蒙版)”中白色的区域是蒙版,因为我们要重绘背景,所以这里选择的是“绘制非蒙版内容”。

采样器:DPM++ 2M SDE Karras,这是最近新加的一个采样器,建议体验下。当然也可以用别的采样器。

采样步数:配合采样器设置。

宽度、高度:根据 16:9的比例设置。

看看出图的效果:


以上就是本文的主要内容了,感兴趣的同学赶紧去试试吧。

如果你刚开始学习AI绘画,建议先看这两篇 Stable Diffusion WebUI 安装指南:

手把手教你在本机安装Stable Diffusion秋叶整合包

手把手教你在云环境炼丹(部署Stable Diffusion WebUI)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/62518.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

centos7 安装 docker 不能看菜鸟教程的 docker 安装,有坑

特别注意 不能看菜鸟教程的 docker 安装&#xff0c;有坑 如果机器不能直接上网&#xff0c;先配置 yum 代理 proxyhttp://172.16.0.11:8443 配置文件修改后即刻生效&#xff0c;再执行 yum install 等命令&#xff0c;就可以正常安装软件了。 参考 https://blog.csdn.net/c…

从零实战SLAM-第二课(SLAM中的基础数学)

空间数据的表达方式&#xff1a;点和向量两种形式。 向量的内积&#xff0c;也叫做点乘&#xff0c;是逐点相乘后累加&#xff0c;最终结果是一个标量&#xff0c;物理意义是一个向量在另一个向量上的投影。 外积&#xff0c;也叫做叉乘&#xff0c;两个向量拼起来成&#xff0…

逆向破解学习-登山赛车

试玩 课程中的内容 Hook代码 import de.robv.android.xposed.XC_MethodHook; import de.robv.android.xposed.XposedHelpers; import de.robv.android.xposed.callbacks.XC_LoadPackage;public class HookComYoDo1SkiSafari2TXYYB_01 extends HookImpl{Overridepublic String p…

JSON.stringify循环引用问题

前端使用到对象的深度复制通常会简单的使用JSON.parse(JSON.stringify(obj))实现 &#xff08;浅表复制会用Array.from、Object.assign、Object.create静态方法实现&#xff09;&#xff0c;但在对象存在循环引用的情况下&#xff08;比如&#xff1a;树结构中子对象存在parent…

Linux进程管理命令

一、进程 程序由一条条指令构成&#xff0c;在运行一个程序的时候就是把这些指令从第一条执行到最后一条&#xff0c;而进程是一个正在运行的程序。 比如说&#xff0c;一个main.c文件是不可以直接运行的&#xff0c;对main.c进行编译链接之后生成一个main.exe&#xff08;在W…

CEC2013(MATLAB):遗传算法(Genetic Algorithm,GA)求解CEC2013的28个函数

一、遗传算法GA 遗传算法&#xff08;Genetic Algorithm&#xff0c;GA&#xff09;起源于对生物系统所进行的计算机模拟研究&#xff0c;是一种随机全局搜索优化方法&#xff0c;它模拟了自然选择和遗传中发生的复制、交叉(crossover)和变异(mutation)等现象&#xff0c;从任…

网络原理(JavaEE初阶系列11)

目录 前言&#xff1a; 1.网络原理的理解 2.应用层 2.1自定义协议的约定 2.1.1确定要传输的信息 2.1.2确定数据的格式 3.传输层 3.1UDP 3.1.1UDP报文格式 3.2TCP 3.2.1确认应答 3.2.2超时重传 3.2.3连接管理 3.2.3.1三次握手 3.2.3.2四次挥手 3.2.4滑动窗口 3.…

2000-2021年地级市碳排放数据/地级市二氧化碳排放

2000-2021年地级市碳排放数据/地级市二氧化碳排放 1、时间&#xff1a;2000-2021年 2、来源&#xff1a;主要是各级统计年鉴、相关统计资料等。其中&#xff0c;能源部分分能源品种分部门的能 源消费数据来源于《中国能源统计年鉴》以及各级统计年鉴&#xff1b;工业过程和产…

《Zookeeper》源码分析(七)之 NIOServerCnxn的工作原理

目录 NIOServerCnxnreadPayload()handleWrite(k)process() NIOServerCnxn 在上一节IOWorkRequest的doWork()方法中提到会将IO就绪的key通过handleIO()方法提交给NIOServerCnxn处理&#xff0c;一个NIOServerCnxn代表客户端与服务端的一个连接&#xff0c;它用于处理两者之间的…

leetcode 面试题 02.07. 链表相交

题目&#xff1a;leetcode 面试题 02.07. 链表相交 描述&#xff1a; 给你两个单链表的头节点 headA 和 headB &#xff0c;请你找出并返回两个单链表相交的起始节点。如果两个链表没有交点&#xff0c;返回 null 。 图示两个链表在节点 c1 开始相交&#xff1a; 思路&…

【ChatGPT 指令大全】怎么使用ChatGPT来帮我们写作

在数字化时代&#xff0c;人工智能为我们的生活带来了无数便利和创新。在写作领域&#xff0c;ChatGPT作为一种智能助手&#xff0c;为我们提供了强大的帮助。不论是作文、文章&#xff0c;还是日常函电&#xff0c;ChatGPT都能成为我们的得力助手&#xff0c;快速提供准确的文…

开发工具IDEA的下载与初步使用【各种快捷键的设置,使你的开发事半功倍】

&#x1f973;&#x1f973;Welcome Huihuis Code World ! !&#x1f973;&#x1f973; 接下来看看由辉辉所写的关于IDEA的相关操作吧 目录 &#x1f973;&#x1f973;Welcome Huihuis Code World ! !&#x1f973;&#x1f973; 一.IDEA的简介以及优势 二.IDEA的下载 1.下…