深度强化学习(DRL)算法 附录 6 —— NLP 回顾之预训练模型篇

Self-Attention

模型结构

上图架构以 batch_size 为 1,两个时间步的 X 为例子,计算过程如下:

位置编码

根据 self-attention 的模型结构,改变 X 的输入顺序,不影响 attention 的结果,所以还需要引入额外的位置信息,即位置编码。

图里计算机二进制编码的低位和位置编码矩阵的前面几列对应。

除了上面捕获绝对位置信息之外,上述的位置编码还允许模型学习得到输入序列中相对位置信息。 这是因为对于任何确定的位置偏移δ,位置 i+δ 处的位置编码可以线性投影位置 i 处的位置编码来表示。

\begin{aligned} & {\left[\begin{array}{cc} \cos \left(\delta \omega_j\right) & \sin \left(\delta \omega_j\right) \\ -\sin \left(\delta \omega_j\right) & \cos \left(\delta \omega_j\right) \end{array}\right]\left[\begin{array}{c} p_{i, 2 j} \\ p_{i, 2 j+1} \end{array}\right] } \\ = & {\left[\begin{array}{c} \cos \left(\delta \omega_j\right) \sin \left(i \omega_j\right)+\sin \left(\delta \omega_j\right) \cos \left(i \omega_j\right) \\ -\sin \left(\delta \omega_j\right) \sin \left(i \omega_j\right)+\cos \left(\delta \omega_j\right) \cos \left(i \omega_j\right) \end{array}\right] } \\ = & {\left[\begin{array}{l} \sin \left((i+\delta) \omega_j\right) \\ \cos \left((i+\delta) \omega_j\right) \end{array}\right] } \\ = & {\left[\begin{array}{c} p_{i+\delta, 2 j} \\ p_{i+\delta, 2 j+1} \end{array}\right] } \end{aligned}

代码

#@save
class PositionalEncoding(nn.Module):"""位置编码"""def __init__(self, num_hiddens, dropout, max_len=1000):super(PositionalEncoding, self).__init__()self.dropout = nn.Dropout(dropout)# 创建一个足够长的Pself.P = torch.zeros((1, max_len, num_hiddens))X = torch.arange(max_len, dtype=torch.float32).reshape(-1, 1) / torch.pow(10000, torch.arange(0, num_hiddens, 2, dtype=torch.float32) / num_hiddens)self.P[:, :, 0::2] = torch.sin(X)self.P[:, :, 1::2] = torch.cos(X)def forward(self, X):X = X + self.P[:, :X.shape[1], :].to(X.device)return self.dropout(X)

多头注意力

模型结构

  • 两头注意力

  • 七头注意力

添加图片注释,不超过 140 字(可选)

  • 七头注意力连接进行信息融合

  • 掩码多头注意力

和多头注意力是一样的,只不过每个头的 self-attention 变成了 masked self-attention

代码

import math
import torch
from torch import nn
from d2l import torch as d2l#@save
def transpose_qkv(X, num_heads):"""为了多注意力头的并行计算而变换形状"""# 输入X的形状:(batch_size,查询或者“键-值”对的个数,num_hiddens)# 输出X的形状:(batch_size,查询或者“键-值”对的个数,num_heads,# num_hiddens/num_heads)X = X.reshape(X.shape[0], X.shape[1], num_heads, -1)# 输出X的形状:(batch_size,num_heads,查询或者“键-值”对的个数,# num_hiddens/num_heads)X = X.permute(0, 2, 1, 3)# 最终输出的形状:(batch_size*num_heads,查询或者“键-值”对的个数,# num_hiddens/num_heads)return X.reshape(-1, X.shape[2], X.shape[3])#@save
def transpose_output(X, num_heads):"""逆转transpose_qkv函数的操作"""X = X.reshape(-1, num_heads, X.shape[1], X.shape[2])X = X.permute(0, 2, 1, 3)return X.reshape(X.shape[0], X.shape[1], -1)#@save
class DotProductAttention(nn.Module):"""Scaled dot product attention.Defined in :numref:`subsec_additive-attention`"""def __init__(self, dropout, **kwargs):super(DotProductAttention, self).__init__(**kwargs)self.dropout = nn.Dropout(dropout)# Shape of `queries`: (`batch_size`, no. of queries, `d`)# Shape of `keys`: (`batch_size`, no. of key-value pairs, `d`)# Shape of `values`: (`batch_size`, no. of key-value pairs, value# dimension)# Shape of `valid_lens`: (`batch_size`,) or (`batch_size`, no. of queries)def forward(self, queries, keys, values, valid_lens=None):d = queries.shape[-1]# Set `transpose_b=True` to swap the last two dimensions of `keys`scores = torch.bmm(queries, keys.transpose(1,2)) / math.sqrt(d)self.attention_weights = masked_softmax(scores, valid_lens)return torch.bmm(self.dropout(self.attention_weights), values)#@save
class MultiHeadAttention(nn.Module):"""多头注意力"""def __init__(self, key_size, query_size, value_size, num_hiddens,num_heads, dropout, bias=False, **kwargs):super(MultiHeadAttention, self).__init__(**kwargs)self.num_heads = num_headsself.attention = d2l.DotProductAttention(dropout)self.W_q = nn.Linear(query_size, num_hiddens, bias=bias)self.W_k = nn.Linear(key_size, num_hiddens, bias=bias)self.W_v = nn.Linear(value_size, num_hiddens, bias=bias)self.W_o = nn.Linear(num_hiddens, num_hiddens, bias=bias)def forward(self, queries, keys, values, valid_lens):# queries,keys,values的形状:# (batch_size,查询或者“键-值”对的个数,num_hiddens)# valid_lens 的形状:# (batch_size,)或(batch_size,查询的个数)# 经过变换后,输出的queries,keys,values 的形状:# (batch_size*num_heads,查询或者“键-值”对的个数,# num_hiddens/num_heads)queries = transpose_qkv(self.W_q(queries), self.num_heads)keys = transpose_qkv(self.W_k(keys), self.num_heads)values = transpose_qkv(self.W_v(values), self.num_heads)if valid_lens is not None:# 在轴0,将第一项(标量或者矢量)复制num_heads次,# 然后如此复制第二项,然后诸如此类。valid_lens = torch.repeat_interleave(valid_lens, repeats=self.num_heads, dim=0)# output的形状:(batch_size*num_heads,查询的个数,# num_hiddens/num_heads)output = self.attention(queries, keys, values, valid_lens)# output_concat的形状:(batch_size,查询的个数,num_hiddens)output_concat = transpose_output(output, self.num_heads)return self.W_o(output_concat)

Transformer

模型结构

encoder

decoder

代码

import math
import pandas as pd
import torch
from torch import nn
from d2l import torch as d2l#@save
class PositionWiseFFN(nn.Module):"""基于位置的前馈网络"""def __init__(self, ffn_num_input, ffn_num_hiddens, ffn_num_outputs,**kwargs):super(PositionWiseFFN, self).__init__(**kwargs)self.dense1 = nn.Linear(ffn_num_input, ffn_num_hiddens)self.relu = nn.ReLU()self.dense2 = nn.Linear(ffn_num_hiddens, ffn_num_outputs)def forward(self, X):return self.dense2(self.relu(self.dense1(X)))#@save
class AddNorm(nn.Module):"""残差连接后进行层规范化"""def __init__(self, normalized_shape, dropout, **kwargs):super(AddNorm, self).__init__(**kwargs)self.dropout = nn.Dropout(dropout)self.ln = nn.LayerNorm(normalized_shape)def forward(self, X, Y):return self.ln(self.dropout(Y) + X)#@save
class EncoderBlock(nn.Module):"""Transformer编码器块"""def __init__(self, key_size, query_size, value_size, num_hiddens,norm_shape, ffn_num_input, ffn_num_hiddens, num_heads,dropout, use_bias=False, **kwargs):super(EncoderBlock, self).__init__(**kwargs)self.attention = d2l.MultiHeadAttention(key_size, query_size, value_size, num_hiddens, num_heads, dropout,use_bias)self.addnorm1 = AddNorm(norm_shape, dropout)self.ffn = PositionWiseFFN(ffn_num_input, ffn_num_hiddens, num_hiddens)self.addnorm2 = AddNorm(norm_shape, dropout)def forward(self, X, valid_lens):Y = self.addnorm1(X, self.attention(X, X, X, valid_lens))return self.addnorm2(Y, self.ffn(Y))#@save
class TransformerEncoder(d2l.Encoder):"""Transformer编码器"""def __init__(self, vocab_size, key_size, query_size, value_size,num_hiddens, norm_shape, ffn_num_input, ffn_num_hiddens,num_heads, num_layers, dropout, use_bias=False, **kwargs):super(TransformerEncoder, self).__init__(**kwargs)self.num_hiddens = num_hiddensself.embedding = nn.Embedding(vocab_size, num_hiddens)self.pos_encoding = d2l.PositionalEncoding(num_hiddens, dropout)self.blks = nn.Sequential()for i in range(num_layers):self.blks.add_module("block"+str(i),EncoderBlock(key_size, query_size, value_size, num_hiddens,norm_shape, ffn_num_input, ffn_num_hiddens,num_heads, dropout, use_bias))def forward(self, X, valid_lens, *args):# 因为位置编码值在-1和1之间,# 因此嵌入值乘以嵌入维度的平方根进行缩放,# 然后再与位置编码相加。X = self.pos_encoding(self.embedding(X) * math.sqrt(self.num_hiddens))self.attention_weights = [None] * len(self.blks)for i, blk in enumerate(self.blks):X = blk(X, valid_lens)self.attention_weights[i] = blk.attention.attention.attention_weightsreturn Xclass DecoderBlock(nn.Module):"""解码器中第i个块"""def __init__(self, key_size, query_size, value_size, num_hiddens,norm_shape, ffn_num_input, ffn_num_hiddens, num_heads,dropout, i, **kwargs):super(DecoderBlock, self).__init__(**kwargs)self.i = iself.attention1 = d2l.MultiHeadAttention(key_size, query_size, value_size, num_hiddens, num_heads, dropout)self.addnorm1 = AddNorm(norm_shape, dropout)self.attention2 = d2l.MultiHeadAttention(key_size, query_size, value_size, num_hiddens, num_heads, dropout)self.addnorm2 = AddNorm(norm_shape, dropout)self.ffn = PositionWiseFFN(ffn_num_input, ffn_num_hiddens,num_hiddens)self.addnorm3 = AddNorm(norm_shape, dropout)def forward(self, X, state):enc_outputs, enc_valid_lens = state[0], state[1]# 训练阶段,输出序列的所有词元都在同一时间处理,# 因此state[2][self.i]初始化为None。# 预测阶段,输出序列是通过词元一个接着一个解码的,# 因此state[2][self.i]包含着直到当前时间步第i个块解码的输出表示if state[2][self.i] is None:key_values = Xelse:key_values = torch.cat((state[2][self.i], X), axis=1)state[2][self.i] = key_valuesif self.training:batch_size, num_steps, _ = X.shape# dec_valid_lens的开头:(batch_size,num_steps),# 其中每一行是[1,2,...,num_steps]dec_valid_lens = torch.arange(1, num_steps + 1, device=X.device).repeat(batch_size, 1)else:dec_valid_lens = None# 自注意力X2 = self.attention1(X, key_values, key_values, dec_valid_lens)Y = self.addnorm1(X, X2)# 编码器-解码器注意力。# enc_outputs的开头:(batch_size,num_steps,num_hiddens)Y2 = self.attention2(Y, enc_outputs, enc_outputs, enc_valid_lens)Z = self.addnorm2(Y, Y2)return self.addnorm3(Z, self.ffn(Z)), stateclass TransformerDecoder(d2l.AttentionDecoder):def __init__(self, vocab_size, key_size, query_size, value_size,num_hiddens, norm_shape, ffn_num_input, ffn_num_hiddens,num_heads, num_layers, dropout, **kwargs):super(TransformerDecoder, self).__init__(**kwargs)self.num_hiddens = num_hiddensself.num_layers = num_layersself.embedding = nn.Embedding(vocab_size, num_hiddens)self.pos_encoding = d2l.PositionalEncoding(num_hiddens, dropout)self.blks = nn.Sequential()for i in range(num_layers):self.blks.add_module("block"+str(i),DecoderBlock(key_size, query_size, value_size, num_hiddens,norm_shape, ffn_num_input, ffn_num_hiddens,num_heads, dropout, i))self.dense = nn.Linear(num_hiddens, vocab_size)def init_state(self, enc_outputs, enc_valid_lens, *args):return [enc_outputs, enc_valid_lens, [None] * self.num_layers]def forward(self, X, state):X = self.pos_encoding(self.embedding(X) * math.sqrt(self.num_hiddens))self._attention_weights = [[None] * len(self.blks) for _ in range (2)]for i, blk in enumerate(self.blks):X, state = blk(X, state)# 解码器自注意力权重self._attention_weights[0][i] = blk.attention1.attention.attention_weights# “编码器-解码器”自注意力权重self._attention_weights[1][i] = blk.attention2.attention.attention_weightsreturn self.dense(X), state@propertydef attention_weights(self):return self._attention_weightsnum_hiddens, num_layers, dropout, batch_size, num_steps = 32, 2, 0.1, 64, 10
lr, num_epochs, device = 0.005, 200, d2l.try_gpu()
ffn_num_input, ffn_num_hiddens, num_heads = 32, 64, 4
key_size, query_size, value_size = 32, 32, 32
norm_shape = [32]train_iter, src_vocab, tgt_vocab = d2l.load_data_nmt(batch_size, num_steps)encoder = TransformerEncoder(len(src_vocab), key_size, query_size, value_size, num_hiddens,norm_shape, ffn_num_input, ffn_num_hiddens, num_heads,num_layers, dropout)
decoder = TransformerDecoder(len(tgt_vocab), key_size, query_size, value_size, num_hiddens,norm_shape, ffn_num_input, ffn_num_hiddens, num_heads,num_layers, dropout)
net = d2l.EncoderDecoder(encoder, decoder)
d2l.train_seq2seq(net, train_iter, lr, num_epochs, tgt_vocab, device)

Bert

bert 开启了预训练模型的风潮,使用了带掩码的语言模型,具体就是通过大量的数据,模型获取了语言信息抽取的能力,从而可以通过 fine-tune 应用到各种 NLP 任务上。

3w 的词典,使用了 WordPiece。[cls] A [seq] B [seq]

位置嵌入换成了学习的矩阵。

模型结构

截取了 transformer 的 encoder(代码没有改动)

不同点:

  • 输入

  • 训练(类似完形填空,以及下一个句子预测)

尽管掩蔽语言建模能够编码双向上下文来表示单词,但它不能显式地建模文本对之间的逻辑关系。为了帮助理解两个文本序列之间的关系,BERT在预训练中考虑了一个二元分类任务——下一句预测。在为预训练生成句子对时,有一半的时间它们确实是标签为“真”的连续句子;在另一半的时间里,第二个句子是从语料库中随机抽取的,标记为“假”。

模型参数计算

BERT-base(H = 768,L = 12,A = 12)

Transformer encoder block 里面主要参数有:

  1. 嵌入层:H x 30000(vocab_size 约等于 30000)

2. 全连接层:H x 4H + 4H x H(一个 block 里面有两个全连接层)

3. 多头注意力机制层:H x H / head_num x 3(一个头的参数,3代表 Q,K,V 用不同矩阵做线性变换),所有头加起来 H x H x 3,再加上多头注意力机制层的线性变换 H x H,这里可以结合下图理解:

添加图片注释,不超过 140 字(可选)

1,2,3 加起来就是 BERT-base 的参数数量。

计算公式: L*12H^{2} + 30000*H \approx 110M (H=768, L=12)

BERT-large 同理可以计算出参数数量约等于 340M。

GPT-3

截取了 transformer 的 decoder(代码没有改动)

参考

51 序列模型【动手学深度学习v2】-跟李沐学AI-【完结】动手学深度学习 PyTorch版-哔哩哔哩视频

8.1. 序列模型 - 动手学深度学习 2.0.0 documentation

Visualizing A Neural Machine Translation Model (Mechanics of Seq2seq Models With Attention)

The Illustrated Transformer

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/625581.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【教程】一个比较良心的C++代码混淆器

这是一个比较良心的C代码混淆器,用于信息竞赛训练和保护代码免受抄袭。本文将介绍这个混淆器的使用方法、混淆效果和已知的一些bug。同时,我们也会给出一些示例来演示混淆器的具体操作。 引言 在信息竞赛训练和实际开发中,保护代码的安全性和…

淘宝API商品详情数据在数据分析行业中具有不可忽视的重要性

淘宝商品详情数据在数据分析行业中具有不可忽视的重要性。这些数据为商家、市场分析师以及数据科学家提供了丰富的信息,有助于他们更深入地理解市场动态、消费者行为以及商品竞争态势。以下是淘宝商品详情数据在数据分析行业中的重要性体现: 请求示例&a…

Python实现exe小工具

1、实例代码 import tkinter as tk from tkinter import messagebox from tkinter import ttk import requestsdef submit():input_text entry.get()if len(input_text) 0:messagebox.showinfo("提示", "请输入您所要提问的问题!")returnsel…

cesium加载倾斜影像数据(模拟雨、雪、雾、无人机飞行、测距、箭头标绘、电子围栏等)

实现效果如下: 功能菜单如下: 加载倾斜影像核心代码: var palaceTileset new Cesium.Cesium3DTileset({url: http://127.0.0.1:9002/tileset.json,//控制切片视角显示的数量,可调整性能maximumScreenSpaceError: 0.1,maximumNum…

C++ | Leetcode C++题解之第31题下一个排列

题目&#xff1a; 题解&#xff1a; class Solution { public:void nextPermutation(vector<int>& nums) {int i nums.size() - 2;while (i > 0 && nums[i] > nums[i 1]) {i--;}if (i > 0) {int j nums.size() - 1;while (j > 0 && …

HA-Maleimide-HA马来酰亚胺修饰透明质酸 水凝胶递送药物

HA-Maleimide-HA马来酰亚胺修饰透明质酸 水凝胶递送药物 【中文名称】马来酰亚胺修饰透明质酸 【英文名称】HA-Maleimide 【分 子 量】3k/5k/7k/10k/50k/100k/200k/300k/500k/1000k...... 【结 构 式】 【品 牌】碳水科技&#xff08;Tanshtech&#xff09; 【纯 度…

闲不住,手写一个数据库文档生成工具

shigen坚持更新文章的博客写手&#xff0c;擅长Java、python、vue、shell等编程语言和各种应用程序、脚本的开发。记录成长&#xff0c;分享认知&#xff0c;留住感动。 个人IP&#xff1a;shigen 逛博客的时候&#xff0c;发现了一个很有意思的文章&#xff1a;数据库表结构导…

【二分查找】Leetcode 74. 搜索二维矩阵【中等】

搜索二维矩阵 给你一个满足下述两条属性的 m x n 整数矩阵&#xff1a; 每行中的整数从左到右按非严格递增顺序排列。每行的第一个整数大于前一行的最后一个整数。 给你一个整数 target &#xff0c;如果 target 在矩阵中&#xff0c;返回 true &#xff1b;否则&#xff0c…

面试:sleep 和 wait

一、共同点 wait(),wait(long)和sleep(long)的效果都是让当前线程暂时放弃CPU的使用权&#xff0c;进入阻塞状态 二、不同点 1、方法归属不同 sleep(long)是Thread的静态方法而wait(), wait(long)都是Object的成员方法&#xff0c;每个对象都有 2、醒来的时机不同 执行sleep(l…

Linux —— 进程控制

一、进程创建 —— fork 1.fork fork&#xff1a;在调用时&#xff0c;创建子进程&#xff0c;父进程返回子进程pid&#xff0c;子进程返回0&#xff0c;出错返回-1 头文件&#xff1a;#include<unistd.h> 2.fork函数被调用时&#xff0c;CPU做了什么&#xff1f; a…

使用SpringBoot3+Vue3开发公寓管理系统

项目介绍 公寓管理系统可以帮助公寓管理员更方便的进行管理房屋。功能包括系统管理、房间管理、租户管理、收租管理、房间家具管理、家具管理、维修管理、维修师傅管理、退房管理。 功能介绍 系统管理 用户管理 对系统管理员进行管理&#xff0c;新增管理员&#xff0c;修改…

【Leetcode】2923. 找到冠军 I

文章目录 题目思路代码复杂度分析时间复杂度空间复杂度 结果总结 题目 题目链接&#x1f517; 一场比赛中共有 n n n 支队伍&#xff0c;按从 0 0 0 到 n − 1 n - 1 n−1 编号。 给你一个下标从 0 0 0 开始、大小为 n ∗ n n * n n∗n 的二维布尔矩阵 g r i d grid gr…