mysql高级三:sql性能优化+索引优化+慢查询日志

内容介绍
单表索引失效案例

0、思考题:如果把100万数据插入MYSQL ,如何提高插入效率

(1)关闭自动提交,只手动提交一次

(2)删除除主键索引外其他索引

(3)拼写mysql可以执行的长sql,批量插入数据

(4)使用java多线程

(5)使用框架,设置属性,实现批量插入

1、计算、函数导致索引失效

CREATE INDEX idx_name ON emp (NAME);

EXPLAIN SELECT * FROM emp WHERE emp.name  LIKE 'abc%';

EXPLAIN SELECT * FROM emp WHERE LEFT(emp.name,3) = 'abc'; ----索引失效

2 LIKE以%开头索引失效

EXPLAIN SELECT * FROM emp WHERE NAME LIKE '%ab%'; ----索引失效

3、不等于(!= 或者<>)索引失效

EXPLAIN SELECT * FROM emp WHERE emp.name = 'abc' ;

EXPLAIN SELECT * FROM emp WHERE emp.name <> 'abc' ; ----索引失效

4、IS NOT NULL 和 IS NULL

EXPLAIN SELECT * FROM emp WHERE emp.name IS NULL;

EXPLAIN SELECT * FROM emp WHERE emp.name IS NOT NULL; ----索引失效

5、类型转换导致索引失效

EXPLAIN SELECT * FROM emp WHERE NAME='123';

EXPLAIN SELECT * FROM emp WHERE NAME= 123; ----索引失效

6、全值匹配我最爱

EXPLAIN SELECT * FROM emp WHERE emp.age = 30 AND deptid = 4 AND emp.name = 'abcd';

CREATE INDEX idx_age ON emp(age);

CREATE INDEX idx_age_deptid ON emp(age,deptid);

CREATE INDEX idx_age_deptid_name ON emp(age,deptid,`name`);

7、最佳左前缀法则

EXPLAIN SELECT * FROM emp WHERE emp.age=30 AND emp.name = 'abcd' ;

CREATE INDEX idx_age_name ON emp (age,NAME);

EXPLAIN SELECT * FROM emp WHERE emp.deptid=1 AND emp.name = 'abcd';

EXPLAIN SELECT * FROM emp WHERE emp.age = 30 AND emp.deptid=1 AND emp.name = 'abcd';

CREATE INDEX idx_age_deptid_name ON emp(age,deptid,`name`);

EXPLAIN SELECT * FROM emp WHERE emp.deptid=1 AND emp.name = 'abcd' AND emp.age = 30;

8、索引中范围条件右边的列失效

CREATE INDEX idx_age_deptid_name ON emp(age,deptid,`name`);

EXPLAIN SELECT * FROM emp WHERE emp.age=30 AND emp.name = 'abc' AND emp.deptId>1000 ;

CREATE INDEX idx_age_name_deptid ON emp(age,`name`,deptid);

关联查询优化

1、数据准备

-- 分类CREATE TABLE IF NOT EXISTS `class` (`id` INT(10) UNSIGNED NOT NULL AUTO_INCREMENT,`card` INT(10) UNSIGNED NOT NULL,PRIMARY KEY (`id`));-- 图书CREATE TABLE IF NOT EXISTS `book` (`bookid` INT(10) UNSIGNED NOT NULL AUTO_INCREMENT,`card` INT(10) UNSIGNED NOT NULL,PRIMARY KEY (`bookid`));-- 插入16条记录INSERT INTO class(card) VALUES(FLOOR(1 + (RAND() * 20)));INSERT INTO class(card) VALUES(FLOOR(1 + (RAND() * 20)));INSERT INTO class(card) VALUES(FLOOR(1 + (RAND() * 20)));INSERT INTO class(card) VALUES(FLOOR(1 + (RAND() * 20)));INSERT INTO class(card) VALUES(FLOOR(1 + (RAND() * 20)));INSERT INTO class(card) VALUES(FLOOR(1 + (RAND() * 20)));INSERT INTO class(card) VALUES(FLOOR(1 + (RAND() * 20)));INSERT INTO class(card) VALUES(FLOOR(1 + (RAND() * 20)));INSERT INTO class(card) VALUES(FLOOR(1 + (RAND() * 20)));INSERT INTO class(card) VALUES(FLOOR(1 + (RAND() * 20)));INSERT INTO class(card) VALUES(FLOOR(1 + (RAND() * 20)));INSERT INTO class(card) VALUES(FLOOR(1 + (RAND() * 20)));INSERT INTO class(card) VALUES(FLOOR(1 + (RAND() * 20)));INSERT INTO class(card) VALUES(FLOOR(1 + (RAND() * 20)));INSERT INTO class(card) VALUES(FLOOR(1 + (RAND() * 20)));INSERT INTO class(card) VALUES(FLOOR(1 + (RAND() * 20)));-- 插入20条记录INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));

2、左外连接实例

(1)明确角色

(2)优化

EXPLAIN SELECT * FROM class LEFT JOIN book ON class.card = book.card;

CREATE INDEX idx_class_card ON class(card);

CREATE INDEX idx_book_card ON book(card);

*使用LEFT JOIN,前面的是驱动表、后面是被驱动表

针对两张表的连接条件涉及的列,索引要创建在被驱动表上,驱动表尽量是小表

  • 如果驱动表上没有where过滤条件
    • 当驱动表的连接条件没有索引时,驱动表是全表扫描
    • 当针对驱动表的连接条件建立索引时,驱动表依然要进行全索引扫描
    • 因此,此时建立在驱动表上的连接条件上的索引是没有太大意义的
  • 如果驱动表上有where过滤条件,那么针对过滤条件创建的索引是有必要的

3、内连接实例

EXPLAIN SELECT * FROM class INNER JOIN book ON class.card = book.card;

CREATE INDEX idx_class_card ON class(card);

CREATE INDEX idx_book_card ON book(card);

*使用INNER JOIN,驱动表、被驱动表不固定,mysql选择

MySQL优化器也会自动选择驱动表,自动选择驱动表的原则是:索引创建在被驱动表上,驱动表是小表。

4、分析4种查询sql(mysql5)

#1 NO3EXPLAIN SELECT ab.name,c.`name` ceoname FROM(SELECT a.`name`,b.`CEO` FROM emp aLEFT JOIN dept b ON a.`deptId`=b.`id`)abLEFT JOIN emp c ON ab.ceo=c.`id`;#2 NO4EXPLAIN SELECT c.name,ab.name ceoname FROM emp c LEFT JOIN(SELECT a.`name`,b.`id` FROM emp aINNER JOIN dept b ON b.`CEO` = a.`id`)abON c.`deptId`= ab.id;#3  NO1EXPLAIN SELECT a.`name`,c.`name` ceoname FROM emp aLEFT JOIN dept b  ON a.`deptId`= b.idLEFT JOIN emp c ON b.`CEO`= c.`id`;#4  NO2EXPLAIN SELECT a.`name`,(SELECT c.name FROM emp c WHERE c.id =b.`CEO`)ceonameFROM emp aLEFT JOIN dept b ON a.`deptId`=b.`id`;

5、总结

  • 保证被驱动表的JOIN字段已经创建了索引
  • 需要JOIN 的字段,数据类型保持绝对一致。
  • LEFT JOIN 时,选择小表作为驱动表,大表作为被驱动表 。减少外层循环的次数。
  • INNER JOIN 时,MySQL会自动将小结果集的表选为驱动表 。选择相信MySQL优化策略。
  • 能够直接多表关联的尽量直接关联,不用子查询。(减少查询的趟数)
  • 衍生表建不了索引(MySQL5.5

其他优化

1、子查询优化

(1)获取非掌门人成员

#获取非掌门人成员

CALL proc_drop_index("atguigudb","emp");

CALL proc_drop_index("atguigudb","dept");

SELECT * FROM t_emp a WHERE a.id NOT IN 

(SELECT b.ceo FROM t_dept b WHERE b.ceo IS NOT NULL);

EXPLAIN SELECT * FROM emp a WHERE a.id NOT IN 

(SELECT b.ceo FROM dept b WHERE b.ceo IS NOT NULL);

#子查询优化NOT IN 

EXPLAIN SELECT * FROM emp a LEFT JOIN dept b ON a.id = b.ceo

WHERE  b.id IS NULL;

(2)结论

尽量不要使用NOT IN 或者 NOT EXISTS,用LEFT JOIN xxx ON xx = xx WHERE xx IS NULL替代

2、排序优化

(1)实例

CALL proc_drop_index("atguigudb","emp");

CALL proc_drop_index("atguigudb","dept");

CREATE INDEX idx_age_deptid_name ON emp (age,deptid,`name`);

#无过滤,不索引

EXPLAIN SELECT * FROM emp ORDER BY age,deptid;

EXPLAIN SELECT * FROM emp ORDER BY age,deptid LIMIT 10;

EXPLAIN SELECT * FROM emp WHERE age=45 ORDER BY deptid;

#顺序错,不索引

EXPLAIN SELECT * FROM emp WHERE age=45 ORDER BY deptid, `name`;

EXPLAIN SELECT * FROM emp WHERE age=45 ORDER BY deptid, empno;

CREATE INDEX idx_age_deptid_empno ON emp (age,deptid,`empno`);

EXPLAIN SELECT * FROM emp WHERE age=45 ORDER BY `name`, deptid;

EXPLAIN SELECT * FROM emp WHERE deptid=45 ORDER BY age;

#方向反,不索引

EXPLAIN SELECT * FROM emp WHERE age=45 ORDER BY deptid DESC, `name` DESC;

EXPLAIN SELECT * FROM emp WHERE age=45 ORDER BY deptid ASC, `name` DESC;

  1. 总结

无过滤,不索引

顺序错,不索引

方向反,不索引

3、mysql索引选择

EXPLAIN SELECT * FROM emp WHERE age =30 AND empno <101000 ORDER BY `name`;

CREATE INDEX idx_age_empno ON emp (age,`empno`);

CREATE INDEX idx_age_name ON emp (age,NAME);

*当【范围条件】和【group by 或者 order by】的字段出现二选一时,优先观察条件字段的过滤数量,如果过滤的数据足够多,而需要排序的数据并不多时,优先把索引放在范围字段上。反之,亦然。

也可以将选择权交给MySQL:索引同时存在,mysql自动选择最优的方案:(对于这个例子,mysql选择idx_age_empno),但是,随着数据量的变化,选择的索引也会随之变化的。

4、双路排序和单路排序

(1)双路排序(慢)

取一批数据,要对磁盘进行两次扫描。众所周知,IO是很耗时的,所以在mysql4.1之后,出现了第二种改进的算法,就是单路排序

(2)单路排序(快)

它的效率更快一些,因为只读取一次磁盘,避免了第二次读取数据。并且把随机IO变成了顺序IO。但是它会使用更多的空间 因为它把每一行都保存在内存中了。

5、分组优化

  • group by 使用索引的原则几乎跟order by一致。但是group by 即使没有过滤条件用到索引,也可以直接使用索引(Order By 必须有过滤条件才能使用上索引)
  • 包含了order bygroup bydistinct这些查询的语句,where条件过滤出来的结果集请保持在1000行以内,否则SQL会很慢。

6、覆盖索引优化

总结

  • 禁止使用select *,禁止查询与业务无关字段
  • 尽量利用覆盖索引

慢查询日志

1、如何对系统查询慢做索引优化

(1)找运维人员开启生产数据库慢查询日志

(2)等待1-2周时间,积累慢查询日志

(3)借助工具获取慢查询次数最多和查询时间最长的几个sql进行优化

(4)在生产数据库,使用EXPLAIN进行sql分析,找到瓶颈,创建索引优化

(5)关闭慢查询日志。

2、是什么

一种日志记录,查看哪些SQL超出了我们的最大忍耐时间值。

3、使用

(1)开启slow_query_log

SET GLOBAL slow_query_log=1;

SHOW VARIABLES LIKE '%slow_query_log%';

(2)修改long_query_time阈值

SHOW VARIABLES LIKE '%long_query_time%'; -- 查看值:默认10秒

SET GLOBAL long_query_time=0.1; -- 设置一个比较短的时间,便于测试

(3)运行sql

(4)查看慢查询日志

(5)使用工具分析慢查询日志

-- 查看mysqldumpslow的帮助信息

mysqldumpslow --help

-- 工作常用参考

-- 1.得到返回记录集最多的10个SQL

mysqldumpslow -s r -t 10 /var/lib/mysql/atguigu-slow.log

-- 2.得到访问次数最多的10个SQL

mysqldumpslow -s c -t 10 /var/lib/mysql/atguigu-slow.log

-- 3.得到按照时间排序的前10条里面含有左连接的查询语句

mysqldumpslow -s t -t 10 -g "left join" /var/lib/mysql/atguigu-slow.log

-- 4.另外建议在使用这些命令时结合 | 和more 使用 ,否则语句过多有可能出现爆屏情况

mysqldumpslow -s r -t 10 /var/lib/mysql/atguigu-slow.log | more

1、单表索引失效案例

2、关联查询优化

3、其他优化

4、慢查询日志

5、视图

6、高性能架构模式

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/62804.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Blazor 简单组件(2):B_row/B_col 12分隔布局 简单开发

文章目录 前言12分隔布局开发B_col.razorB_col.razor.cssB_row.razorB_row.razor.css 使用案例 前言 Blazor 简单组件(0)&#xff1a;简单介绍 12分隔布局开发 B_col.razor if (Offset ! "0") {<div style" grid-column-start: span (Offset)">&l…

系统架构设计师-软件架构设计(7)

目录 大型网站系统架构演化 一、第一阶段&#xff1a;单体架构 到 第二阶段&#xff1a;垂直架构 二、第三阶段&#xff1a;使用缓存改善网站性能 1、缓存与数据库的数据一致性问题 2、缓存技术对比【MemCache与Redis】 3、Redis分布式存储方案 4、Redis集群切片的常见方式 …

【css】textarea-通过resize:none 禁止拖动设置大小

使用 resize 属性可防止调整 textareas 的大小&#xff08;禁用右下角的“抓取器”&#xff09;&#xff1a; 没有设置resize:none 代码&#xff1a; <!DOCTYPE html> <html> <head> <style> textarea {width: 100%;height: 150px;padding: 12px 20p…

Redis中的数据类型

Redis中的数据类型 Redis存储的是key-value结构的数据&#xff0c;其中key是字符串类型&#xff0c;value有5种常用的数据类型: 字符串string哈希hash列表list集合set有序集合sorted set

信息安全:防火墙技术原理与应用.

信息安全&#xff1a;防火墙技术原理与应用. 防火墙是网络安全区域边界保护的重要技术。为了应对网络威胁&#xff0c;联网的机构或公司将自己的网络与公共的不可信任的网络进行隔离&#xff0c;其方法是根据网络的安全信任程度和需要保护的对象&#xff0c;人为地划分若干安全…

机器学习实战3-随机森林算法

文章目录 集成算法概述sklearn中的集成算法模块 RandomForestClassifier重要参数&&随机森林的分类器控制基评估器的参数n_estimatorssklearn建模流程复习交叉验证我们进行10次交叉验证&#xff0c;观察随机森林和决策树的效果n_estimators学习曲线 bootstrap & oob…

C++中的typeid

2023年8月10日&#xff0c;周四下午 目录 概述typeid的用法用法1用法2用法3举例说明 概述 typeid是 C 中的运算符&#xff0c;用于获取表达式或类型的运行时类型信息。 它返回一个std::type_info对象&#xff0c;该对象包含有关类型的信息&#xff0c;例如类型的名称。 type…

聊一下互联网开源变现

(点击即可收听) 互联网开源变现其实是指通过开源软件或者开放源代码的方式&#xff0c;实现收益或盈利。这种方式越来越被广泛应用于互联网行业 在互联网开源变现的模式中&#xff0c;最常见的方式是通过捐款、广告、付费支持或者授权等方式获利。 例如&#xff0c;有些开源软件…

stm32项目(8)——基于stm32的智能家居设计

目录 一.功能设计 二.演示视频 三.硬件选择 1.单片机 2.红外遥控 3.红外探测模块 4.光敏电阻模块 5.温湿度检测模块 6.风扇模块 7.舵机 8.WIFI模块 9.LED和蜂鸣器 10.火焰传感器 11.气体传感器 四.程序设计 1.连线方式 2.注意事项 3.主程序代码 五.课题意义…

pytest fixture 用于teardown工作

fixture通过scope参数控制setup级别&#xff0c;setup作为用例之前前的操作&#xff0c;用例执行完之后那肯定也有teardown操作。这里用到fixture的teardown操作并不是独立的函数&#xff0c;用yield关键字呼唤teardown操作。 举个例子&#xff1a; 输出&#xff1a; 说明&…

.NET SqlSuger 简单介绍,超快开发数据库

文章目录 前言SqlSugar使用我的环境Nuget 安装新建连接串DB First 和 Code First使用增删改查 总结 前言 我之前介绍过EFCore 怎么使用Nuget快速创建数据库&#xff0c;我之后发现SqlSugar更快。这里简单再说一下SqlSugar如何使用 .NET Core 数据库DB First自动生成&#xff0…

Java【算法 04】HTTP的认证方式之DIGEST认证详细流程说明及举例

HTTP的认证方式之DIGEST 1.是什么2.认值流程2.1 客户端发送请求2.2 服务器返回质询信息2.2.1 质询参数2.2.2 质询举例 2.3 客户端生成响应2.4 服务器验证响应2.5 服务器返回响应 3.算法3.1 SHA-2563.1.1 Response3.1.2 A13.1.3 A2 3.2 MD53.2.1 Request-Digest3.2.2 A13.2.3 A2…