OpenCV从入门到精通实战(四)——答题卡识别判卷系统

基于OpenCV的答题卡识别系统,其主要功能是自动读取并评分答题卡上的选择题答案。系统通过图像处理和计算机视觉技术,自动化地完成了从读取图像到输出成绩的整个流程。下面是该系统的主要步骤和实现细节的概述:

1. 导入必要的库

系统首先导入了numpyargparseimutilscv2等Python库。这些库提供了处理图像、解析命令行参数等功能。

# 导入工具包
import numpy as np
import argparse
import imutils
import cv2

2. 参数设置

使用argparse库来处理命令行输入参数,允许用户指定输入图像的路径。

# 设置参数
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", default="images/test_01.png",help="path to the input image")
args = vars(ap.parse_args())

3. 定义答案键

系统中定义了一个答案键(ANSWER_KEY),这是一个字典,用于存储每个问题的正确答案选项

# 正确答案
ANSWER_KEY = {0: 1, 1: 4, 2: 0, 3: 3, 4: 1}

以下是针对每个主要步骤的对应代码片段,以及如何实现在上述答题卡识别系统中的功能:

4. 图像预处理

image = cv2.imread(args["image"])
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
edged = cv2.Canny(blurred, 75, 200)

实现细节

  • cv2.imread:加载图像。
  • cv2.cvtColor:将图像从BGR颜色空间转换为灰度。
  • cv2.GaussianBlur:应用高斯模糊,减少噪声。
  • cv2.Canny:执行Canny边缘检测。
    在这里插入图片描述

5. 轮廓检测

cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
docCnt = Noneif len(cnts) > 0:cnts = sorted(cnts, key=cv2.contourArea, reverse=True)for c in cnts:peri = cv2.arcLength(c, True)approx = cv2.approxPolyDP(c, 0.02 * peri, True)if len(approx) == 4:docCnt = approxbreak

实现细节

  • cv2.findContours:查找边缘。
  • sorted:按轮廓面积大小排序。
  • cv2.approxPolyDP:轮廓近似,寻找角点。
    在这里插入图片描述

6. 透视变换

paper = four_point_transform(image, docCnt.reshape(4, 2))
warped = four_point_transform(gray, docCnt.reshape(4, 2))

实现细节

  • 使用自定义函数four_point_transform来执行透视变换,以得到答题卡的顶视图。
    在这里插入图片描述

7. 应用阈值

thresh = cv2.threshold(warped, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]

实现细节

  • cv2.threshold:通过Otsu方法自动确定最优阈值并二值化图像。
    在这里插入图片描述

8. 轮廓再次检测

cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)

实现细节

  • 再次检测二值化图像中的轮廓。
    在这里插入图片描述

9. 筛选与排序

questionCnts = []for c in cnts:(x, y, w, h) = cv2.boundingRect(c)ar = w / float(h)if w >= 20 and h >= 20 and ar >= 0.9 and ar <= 1.1:questionCnts.append(c)questionCnts = contours.sort_contours(questionCnts, method="top-to-bottom")[0]

实现细节

  • 筛选形状近似于圆的轮廓,并按从上到下排序。
    在这里插入图片描述

10. 评分逻辑

correct = 0
for (q, i) in enumerate(np.arange(0, len(questionCnts), 5)):cnts = contours.sort_contours(questionCnts[i:i+5])[0]bubbled = Nonefor (j, c) in enumerate(cnts):mask = np.zeros(thresh.shape, dtype="uint8")cv2.drawContours(mask, [c], -1, 255, -1)mask = cv2.bitwise_and(thresh, thresh, mask=mask)total = cv2.countNonZero(mask)if bubbled is None or total > bubbled[0]:bubbled = (total, j)if bubbled[1] == ANSWER_KEY[q]:correct += 1

实现细节

  • 遍历每个问题的答题区域,通过填涂密度判断学生选择,通过计算填涂区域的像素密度来判断学生的的选项。然后将这个选择与答案键中的正确选项进行比较,统计出正确的答案数量。
    在这里插入图片描述

11. 结果展示

score = (correct / float(len(ANSWER_KEY))) * 100
print("总分: {:.2f}%".format(score))
cv2.imshow("Original", image)
cv2.imshow("Exam", paper)
cv2.waitKey(0)

实现细节

  • 计算出得分百分比,并输出。
  • cv2.imshow:展示原始图像和处理后的图像,以便检查标记的正确与错误的答案。

源码下载:答题卡识别判卷系统

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/630746.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

设计模式胡咧咧之策略工厂实现导入导出

策略模式&#xff08;Strategy Pattern&#xff09; 定义&#xff1a; 定义了一组算法&#xff0c;将每个算法都封装起来&#xff0c;并且使它们之间可以互换。 本质: 分离算法&#xff0c;选择实现 应用场景 何时使用 一个系统有许多类&#xff0c;而区分他们的只是他们直接…

深入探索:Facebook如何重塑社交互动

在当代社会中&#xff0c;社交互动已成为日常生活的核心组成部分。而在众多的社交媒体平台中&#xff0c;Facebook凭借其卓越的用户基础和创新的功能&#xff0c;已经成为了全球最大的社交媒体平台。本文将深入探讨Facebook如何通过其独特的特性和功能&#xff0c;重塑了人们的…

[Qt网络编程]之UDP通讯的简单编程实现

hello&#xff01;欢迎大家来到我的Qt学习系列之网络编程之UDP通讯的简单编程实现。希望这篇文章能对你有所帮助&#xff01;&#xff01;&#xff01; 本篇文章的相关知识请看我的上篇文章: http://t.csdnimg.cn/UKyeM 目录 UDP通讯 基于主窗口的实现 基于线程的实现 UDP通讯…

【最新可用】Claude国内镜像,可上传图片,可用Claude3全系模型,包括Pro版本的Opus),亲测比GPT好用

Claude对话、上传图片的超详细教程来啦&#xff01; 近期&#xff0c;Claude 3 Opus的发布引发了网络上的广泛关注与热议&#xff0c;有观点认为其性能已经凌驾于GPT-4之上。虽然网络上已经出现了大量基于这两款先进AI技术的实际应用案例&#xff0c;但仍有许多人对在国内如何…

【CANoe】节点/报文DLC检测的CAPL实现

文章目录 一、CAPL中节点/报文DLC检测的相关函数二、CAPL脚本实现三、实测效果1、成功报告2、失败报告(可通过改dbc文件中报文的DLC来触发失败)一、CAPL中节点/报文DLC检测的相关函数 在CAPL中有如下三个函数,可以检测节点/报文的DLC。 第一个检测报文的DLC第二、三个检测节…

C++进修——C++基础入门

初识C 书写HelloWorld #include <iostream> using namespace std;int main() {cout << "HelloWorldd" << endl;system("pause");return 0; }注释 作用&#xff1a;在代码中加一些说明和解释&#xff0c;方便自己或其他程序员阅读代码…

算法一:数字 - 两数之和

给定一个整数数组 nums 和一个目标值 target&#xff0c;请你在该数组中找出和为目标值的那 两个 整数&#xff0c;并返回他们的数组下标。 你可以假设每种输入只会对应一个答案。但是&#xff0c;数组中同一个元素不能使用两遍。 来源&#xff1a;力扣(LeetCode) 链接&#xf…

Python中的模块化编程与软件架构设计【第171篇—软件架构设计】

&#x1f47d;发现宝藏 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。【点击进入巨牛的人工智能学习网站】。 Python中的模块化编程与软件架构设计 在软件开发中&#xff0c;模块化编程和良好的软件架构…

Visual Studio调试C/C++指南

1. 前言 Visual Studio&#xff08;VS&#xff09;是微软开发的一款集成开发环境(IDE)软件&#xff0c;支持C/C、C#、VB、Python等开发语言&#xff0c;开发桌面、Web等应用程序。VS功能极其强大&#xff0c;使用极其便利&#xff0c;用户数量最多&#xff0c;被誉为"宇宙…

鸿蒙入门06-常见装饰器( 简单装饰器 )

装饰器是鸿蒙开发中非常重要的一个环节因为在很多地方我们都需要用到装饰器并且如果我们想高度的复用, 那么装饰器就是必不可少的一环接下来我们就来介绍一些常见的装饰器注意 : 所有装饰器首字母大写 Entry 用来装饰 struct 使用表示页面的入口 Component 装饰 struct, …

芜湖等保测评机构有哪些?在哪里?

芜湖等保测评机构有哪些&#xff1f;在哪里&#xff1f; 【回答】&#xff1a;目前芜湖没有具有正规资质的等保测评机构。芜湖企业可以就近选择安徽省内正规等保测评机构&#xff0c;也可以网上选择。安徽省内等保测评机构看这里&#xff1a;https://www.cloudbility.com/club…

ASUS华硕ROG幻13笔记本电脑GV301R工厂模式原厂OEM预装Windows11系统,恢复出厂开箱状态

适用于型号&#xff1a;GV301RC、GV301RE、GV301RA 工厂模式安装包&#xff1a;https://pan.baidu.com/s/1gLme1VqidpUjCLocgm5ajQ?pwddnbk 提取码&#xff1a;dnbk 工厂模式Win11安装包带有ASUS RECOVERY恢复功能、自带所有驱动、出厂主题壁纸、系统属性专属联机支持标志…