什么是时间序列分析

时间序列分析是现代计量经济学的重要内容,广泛应用于经济、商业、社会问题研究中,在指标预测中具有重要地位,是研究统计指标动态特征和周期特征及相关关系的重要方法。

一、基本概念

经济社会现象随着时间的推移留下运行轨迹,按时间顺序记录下来经济社会现象的观测数据,就是时间序列。比如,2018—2019 年每个季度的国内生产总值, 2019 年每个月居民消费价格涨幅。对时间序列进行分析的目的是,描述时间序列过去的变化特征,发现时间序列运行规律,从而预计未来时间序列的走势。

对时间序列进行描述可以采用一系列动态分析指标,如发展水平、发展速度等。发展水平是时间序列中原有的统计指标数值,发展速度是时间序列中两个时期发展水平的比。比如,2019 年我国生产总值为 99.1 万亿元,这是国内生产总值的发展水平;2019 年我国国内生产总值增长6.1%,是 2019 年国内生产总值相对对 2018 年的发展速度。

二、主要方法

按照时间序列分析方法形成的时代,可以将时间序列方法分为传统时间序列分析和现代时间序列分析。

(一)传统时间序列分析

传统时间序列分析将时间序列分为四种因素,即长期趋势、季节变动、循环变动、不规则变动,将时间序列的变动看做是这些因素复合而成,试图分别揭示各个因素数量对时间序列变动影响的大小,表明各个构成部分变动如何一起形成时间序列的变动。其中,长期趋势是指时间序列在较长时期的变动,季节变动是时间序列由季节性因素影响的周期性变动,循环变动是以年度记录的时间序列所表现出的某种周期性变动,不规则变动是时间序列除去长期趋势、季节变动和循环变动后余下的变动。假定各构成部分影响是可加且相互独立,传统时间序列分析模型可以分为加法模型和乘法模型:Yt=Tt+St+Ct+Ut (加法模型),Y=Tt•St•Ct•Ut(乘法模型),其中 Yt 为时间序列原始值,Tt 为分解的趋势项,St 为分解的季节项,Ct 为分解的循环项,Ut 为分解的随机项。

(二)现代时间序列分析

现代时间序列分析将时间序列看做一个随机过程,通过分析时间序列特性研究序列变化一般规律。时间序列的特性是指序列的平稳性、季节性和随机性。时间序列的统计特性不随时间推移发生变化,称为平稳时间序列;时间序列的统计特性随季节发生变化,则表明序列存在季节性;时间序列变化完全是随机的,序列中各项之间相互独立,称为完全随机序列。分析时间序列重要工具之一是时间序列自相关,即时间序列两项之间的相关性。通过分析时间序列自相关关系,可以识别时间序列是否具有平稳性、季节性和随机性。对于平稳的时间序列,可以采用自回归移动平均模型进行分析预测。对于非平稳时间序列,可以采用差分方法,使时间序列转化为平稳时间序列,进而使用自回归移动平均模型进行分析预测。此外,对于多变量时间序列,还可以采用向量自回归模型进行分析。

应用现代时间序列分析方法时,首先可以通过描述统计方法或图示法预先做一些判断,其次使用统计检验判断时间序列的平稳性,即统计特性(均值和方差等)不随时间的变化而变化。对于平稳序列,可以采用移动自回归模型进行分析; 如果是非平稳序列可以采用差分方法,将其转化为平稳序列进行分析。最后,利用该时间序列分析建立的模型进行序列的预测。

三、示例

为分析某公司 2005—2017 年产品销售量的月度变化,先用图示法了解时间序列变化特点(见下图)。

在这里插入图片描述
从图中可以看出,该公司产品销售量长期看是持续增长,且增长过程中有波动,波动规律性表现为季节性变化,除此以外还有随机波动因素。对此,采用传统时间序列分析方法中的加法模型进行分析,即Yt=Tt+St+Ut。通过因素分解,可得到时间序列的长期趋势因素、季节因素和随机波动因素的影响大小(见下图)。如果要预测该公司产品销售量未来发展趋势,可以利用该序列中的趋势因素进行外推测算。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/635711.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

listpack

目录 为什么有listpack? listpack结构 listpack的节点entry 长度length encoding编码方式 listpack的API 1.创建listpack 2.遍历操作 正向遍历 反向遍历 3.查找元素 4.插入/替换/删除元素 总结 为什么有listpack? ziplist是存储在连续内存空间,节省…

VSCode + ESP-IDF安装与配置全过程

接前一篇文章:ESP-IDF下载与安装完整流程 前一篇文章讲解了如何手动下载ESP-IDF,也就是快速入门 - ESP32 - — ESP-IDF 编程指南 latest 文档 (espressif.com)中的红色框中的部分: 本文讲解另一种方法,也是更为常用的方式 —— VS…

通俗说字解词:什么是道理?常说讲道理,李秘书讲写作这节就给你讲“道理”!

通俗说字解词:什么是道理?常说讲道理,李秘书讲写作这节就给你讲“道理”! 说到“道理”,这可真是个有意思的词。它由“道”和“理”两个部分组成,就像一碗好吃的面,有汤有料,缺一不可…

MySQL-实验-单表、多表数据查询和嵌套查询

目录 0.简单子查询 (1)带比较运算符的子查询 (2)关键字子查询 1.多表查询 3.子查询 4.多表子查询 0.简单子查询 (1)带比较运算符的子查询 在右侧编辑器补充代码,查询大于所有平均年龄的员…

【学习】自动化测试有哪些优势和不足

在当今这个数字化时代,软件测试已经成为了任何一款产品成功的关键因素之一。而在诸多的测试方法中,自动化测试凭借着其独特的魅力吸引着越来越多的企业。今天就让我们一起走进自动化测试的世界,探讨它的优势与不足。 一、自动化测试优势 1.…

小红的排列构造(dp优化)

题目描述 小红拿到了一个长度为n的数组a,她希望你构造两个排列p和q,满足对于i∈[1,n],ai∈[1,n]pi或qi二选一。你能帮帮她吗?定义排列是一个长度为n的数组,其中1到n每个元素恰好出现1次。 输入描述:第一行输入一个正整数n&#…

Github 2024-04-20 开源项目日报 Top10

根据Github Trendings的统计,今日(2024-04-20统计)共有10个项目上榜。根据开发语言中项目的数量,汇总情况如下: 开发语言项目数量非开发语言项目2Python项目2Swift项目2HTML项目1CSS项目1Go项目1C项目1C++项目1Rust项目1编程面试大学:成为软件工程师的全面学习计划 创建周期…

姑苏寻韵~庆开放原子开源大赛 OpenTiny 前端 Web 应用开发挑战赛路演圆满落幕。

春日已至,姑苏古城迎来了一场编程的盛宴——开放原子开源大赛OpenTiny前端Web应用开发挑战赛。历时三个月的激烈角逐,OpenTiny与众多开发者携手共赴这场智慧的较量。决赛路演于4月14日在苏州(太湖)产业软件园圆满落下帷幕~ 开放原…

(C语言)sscanf 与 sprintf详解

目录 1.sprintf函数详解 2. sscanf函数详解 1.sprintf函数详解 头文件&#xff1a;stdio.h 作用&#xff1a;将格式化的数据写入字符串里&#xff0c;也就是将格式化的数据转变为字符串。 演示&#xff1a; #include <stdio.h> struct S {char name[10];int height;…

【Ne4j图数据库入门笔记1】图形数据建模初识

1.1 图形建模指南 图形数据建模是用户将任意域描述为节点的连接图以及与属性和标签关系的过程。Neo4j 图数据模型旨在以 Cypher 查询的形式回答问题&#xff0c;并通过组织图数据库的数据结构来解决业务和技术问题。 1.1.1 图形数据模型介绍 图形数据模型通常被称为对白板友…

Day13-Python基础学习之数据分析案例

数据分析案例 data_define.py # 数据定义的类 class Record:def __init__(self, date, order_id, money, province):self.date dateself.order_id order_idself.money moneyself.province province ​def __str__(self):return f"{self.date}, {self.order_id}, {se…

【LLM 论文】Self-Consistency — 一种在 LLM 中提升 CoT 表现的解码策略

论文&#xff1a;Self-Consistency Improves Chain of Thought Reasoning in Language Models ⭐⭐⭐⭐⭐ ICLR 2023, Google Research 文章目录 论文速读 论文速读 本工作提出了一种解码策略&#xff1a;self-consistency&#xff0c;并可以用于 CoT prompting 中。 该策略提…