[阅读笔记16][Orca-2]Teaching Small Language Models How to Reason

接下来是Orca-2,这篇是微软在23年11月发表的论文,在Orca-1的基础上又进行了一些改进。

作者希望教会Orca-2各种推理策略,例如逐步思考、回忆然后回答、先回忆再推理再回答、直接生成回答等等策略。并且Orca-2应该能针对不同任务应该使用最合适的推理策略。
下图是Orca-2在各种benchmark上的表现,包括语言理解、常识推理、多步推理、数据问题等,可以看到Orca-2超过了所有同等规模的模型,并且接近(有时超过)了比它大5-10倍的模型。这里所有模型都是以LLaMA-2为基座模型训练得到的,排除了不同基座模型带来的性能差异。这里和Orca-1论文中不同,没比较ChatGPT是因为基座模型不同,没法体现出这篇论文训练方法所带来的优越性。

作者在这里探讨了一下不同的系统消息(推理策略)对推理结果带来的巨大影响,即使是GPT-4这样强大的模型也会受不同系统消息影响产生截然不同的推理结果。下面右图展示了这个现象,对GPT-4四次提问,第一次不添加系统消息,得到的答案是错误的。第二次使用类似思维链的系统消息,结果稍微好了一点,但也是错误的。第三次使用“解释你的答案”的系统消息,解释的过程是对的,但是答案是错的。第四次使用左边图中的系统消息,得到了正确的答案和推理过程。

所以针对不同的任务应该使用不同的系统消息(推理策略),这也是作者希望Orca-2做到的,能根据手头的问题选择最有效的解决策略。具体过程分为四步,第一步是先准备好一系列多样的任务。第二步是根据Orca-1的表现,决定每个任务需要哪种推理策略。第三步是根据推理策略写下系统消息,然后输入给教师模型获得回答,这样就得到了训练数据,训练数据的格式是个三元组(system instruction, user prompt, LLM answer)。第四步是prompt擦除,这是比较关键的一步,在训练时将特定任务相关的system instruction替换为与任务无关的通用system instruction,例如下图这样的instruction。这样学生模型只能看到问题和详细的回答,鼓励学生自己学习如何运用推理策略生成谨慎且有逻辑的回答,以及针对特定任务如何选择最优的推理策略。

训练用的数据集分为三部分,包括FLAN-v2的训练集、Orca-1收集的600万条数据、Orca-2新增的81万条数据。
其中Orca-2新增的数据又来自四个部分,第一部分是从FLAN-v2四个子集中1913个任务筛选出1448个高质量任务,从这些高质量任务的训练集中选择了60万个zero-shot问题,然后用这些问题输入LLM合成回答。之后这些数据再经过prompt擦除就可以了。第二部分是包含5万条数据的few-shot数据,将Orca-1数据集转为四元组(task, system instruction, user prompt, answer),然后针对同一个(task, system instruction)随机抽取3-5条(user prompt, answer)组成一条few-shot数据。这里没提到prompt擦除,那应该是没进行特殊处理。第三部分是收集了16万条数学问题。第四部分是完全合成的数据,使用GPT-4创建了2000次医患对话,然后每次对话生成一个摘要。
接下来是训练过程,这里使用LLaMA-2的7B和13B版本作为基座模型,也是类似Orca-1,使用渐进式学习方法来进行训练。先在FLAN-v2数据集上微调1个epoch,然后在500万条ChatGPT数据上微调3个epoch,最后在100万条GPT-4和Orca-2的81万条数据上微调4个epoch。

最后是模型性能展示,左侧为模型推理能力,可以看到13B版本的Orca-2已经无限接近ChatGPT了,并且优于其他13B的网络。右侧是Orca-2在学术考试上的结果,基本达到了13B网络的天花板。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/635775.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

node-sass报错

node-sass报错 解决方案 有几种解决方案,但感觉都是为了下载vsta_sdk这个工具的。 有的电脑下载C开发程序时可以顺带下载这个插件。 可以直接下载VS之后点击下载C桌面开发,但是有的不行,所以网上也就有另外一种方式,就是下载V…

第63天:服务攻防-框架安全CVE 复现DjangoFlaskNode.JSJQuery

目录 思维导图 案例一:JavaScript-开发框架安全-Jquery&Node node.js目录穿越 CVE-2021-21315命令执行 Jquery CVE-2018-9207 案例二:Python-开发框架安全-Django&Flask django cve_2019_14234 CVE-2021-35042 flask ssti 思维导图 案…

修复vite中使用react提示Fast refresh only works when a file only exports components.

前言 我通过 vite 构建了一个 react 应用并使用 react.lazy 来懒加载组件,但是在使用过程中 一直提示 Fast refresh only works when a file only exports components. Move your component(s) to a separate file.eslint(react-refresh/only-export-components)。…

学习空间转换-3D转换

1.什么是空间转换? 使用的是transform属性实现元素在空间内的位移,旋转,缩放等效果。 空间:是从坐标轴角度定义的。x,y,z三条坐标轴构成的一个立体空间,Z轴位置与视线方向相同。 所以空间转换也被叫做3D转换 语法&a…

排序算法集合

912. 排序数组 趁着这道题总结下排序方法 1.快速排序 算法描述 1.从数列中挑出一个元素,称为"基准"(pivot), 2.重新排序数列,所有比基准值小的元素摆放在基准前面,所有比基准值大的元素摆在基…

为什么用云渲染农场?3D云渲染农场助力影视动画行业发展

​计算机图形技术的进步使得3D渲染成为多个产业发展的重要推动力。设计师和艺术家利用这项技术将创意实现,创造出震撼的视觉作品。但是,高质量的渲染需要大量的计算资源。云渲染农场通过提供这些资源,有效提高了渲染的速度和效率,…

精致摄影网站模板 Bootstrap4

目录 一.前言 二.展示 三.下载链接 一.前言 这是一个相机摄影网站。网站结构包括以下部分: 导航栏部分:位于页面顶部,包含了Logo和若干导航链接,如Home、About、Gallery、Services、Testimonial和Contact。 横幅部分&#xff…

接口测试相关

接口测试,接口 接口是数据交互的入口和出口 接口是一套规范和标准 统一设计标准 前后端相对独立 扩展型灵活 接口文档。 接口测试 接口测试环境,运行程序,自己搭建环境 接口测试插件 谷歌postman 火狐 restclient java测试工具为j…

使用PHP开发体育赛事直播平台,有这些缺点和优点

"东莞梦幻网络科技"作为体育直播平台开发领域的领导者,选择使用PHP开发体育赛事直播平台的现成源码,为什么会选择该语言,背后的选择理由可以从该技术的优点和缺点中找到答案。 一、优点1、易学易用与快速开发:PHP语言语…

【python】使用python和selenium实现某平台自动化上传作品的全步骤

第一,我们需要下载python并安装 下载地址:https://www.python.org/downloads/release/python-3123/ 3.x版本的python自带pip工具,因此不需要额外下载。 ModuleNotFoundError: No module named seleniumpip用于下载python适用的各类模块&…

抖音abogus(收部Pixel2手机退坑的dd我走咸鱼淘宝)

声明 本文章中所有内容仅供学习交流使用,不用于其他任何目的,抓包内容、敏感网址、数据接口等均已做脱敏处理,严禁用于商业用途和非法用途,否则由此产生的一切后果均与作者无关!wx a15018601872 本文章未…

IDEA插件:CodeGeex

前言 CodeGeeX是由清华大学和智谱AI联合开发的多语言代码生成模型。CodeGeeX是一款AI编程助手,其功能类似于Github Copilot、Codeium、CodeWhisperer、Bito等智能编程助手。CodeGeeX支持Python、C、Java、JavaScript、Go等10多种主流编程语言。它可以帮助程…