时序分析基础(6)——input delay时序分析

1 简介

  FPGA对于外部的时钟以及数据的延时信息是不知道的,在低速时钟且时钟发射沿在数据正中心的时候,一般可以不做约束来直接使用。但是到了高速时钟或者双沿采样或者发射沿和数据对齐的情况下,这时候就需要告诉VIVADO外部的时钟与数据情况来让VIVADO分析能否满足建立时间与保持时间。INPUT约束仅仅只是告诉VIVADO外部的时钟情况,而内部的布局布线并不会因此改变。

2 INPUT模型

在这里插入图片描述

  上图两个图是外部时钟的两种模型,一种是源同步模型,源同步模型是指时钟给上游芯片,芯片发出时钟与数据给FPGA,这样的好处是时钟和数据同源,有利于时序分析。另一个是系统同步的FPGA输入模型,时钟分别给上游器件和FPGA,这种不好分析FPGA端口的数据与时钟关系,不利于时序约束。现在电路一般采用源同步模式,所以一般情况下只分析源同步模式。
  上游器件一般都是数据采集器件,如AD转换芯片,摄像头芯片。然后通过PCB走线进入到FPGA内部,其中,对于VIVADO来说,FPGA内部的延时是已知的,但是不知道外部数据与时钟的关系,这个时候就需要对外部的时钟以及数据进行约束来告诉FPGA时钟与数据的关系来看是否能正确采集到数据。
  外部的时钟与数据的延时一般情况下包含两个部分,一个是芯片在发射数据的时候,时钟与数据之间的时间延时,另一个就是数据与时钟在PCB走线的时候经过的延时,一般情况下,PCB在布线的时候数据和时钟会做等长设计,这里我们就先不考虑PCB延时。
  源同步模型如下:
在这里插入图片描述
  时钟给上游器件,然后上游器件发出时钟与数据经过PCB走线进入FPGA。这里我们主要分析的就是时钟的采样沿与数据到来的时间,这两个参数是需要给到VIVADO的。我们来在前面的基础上继续分析这个模型的数据实际到达时间与数据要求到达时间。
  数据实际到达的时间有:
D a t a a r r i v a l t i m e = T c o + T d _ b d + T d _ f i (1) Data \;arrival\;time=T_{co}+T_{d\_bd}+T_{d\_fi}\tag{1} Dataarrivaltime=Tco+Td_bd+Td_fi(1)
  数据要求到达的时间有:
D a t a R e q u i r e a r r i v a l t i m e = T c y c l e + T c _ d + T c _ b d + T c _ f i − T s u (2) Data\;Require\;arrival\;time=T_{cycle}+T_{c\_d}+T_{c\_bd}+T_{c\_fi}-T_{su}\tag{2} DataRequirearrivaltime=Tcycle+Tc_d+Tc_bd+Tc_fiTsu(2)
  建立时间裕量有:
S e t u p S l a c k = D a t a R e q u i r e t i m e − D a t a a r r i v a l t i m e = T c y c l e + T c _ d + T c _ b d + T c _ f i − T s u − ( T c o + T d _ b d + T d _ f i ) (3) Setup \;Slack= Data \;Require\;time-Data \;arrival\;time\\ \,\\\qquad\qquad\qquad=T_{cycle}+T_{c\_d}+T_{c\_bd}+T_{c\_fi}-T_{su}-(T_{co}+T_{d\_bd}+T_{d\_fi})\tag{3} SetupSlack=DataRequiretimeDataarrivaltime=Tcycle+Tc_d+Tc_bd+Tc_fiTsuTco+Td_bd+Td_fi(3)
  由于数据一般是多bit并行输出的,且输出的时间与时钟并不是固定的延时,所以一般情况下, T c o T_{co} Tco T d _ b d T_{d\_bd} Td_bd存在一个最大最小值,在分析建立时间裕量的时候,从公式中可以看出当数据延时取最大值的时候,建立时间裕量最小。
  下面是保持时间分析:
  数据实际结束的时间有:
D a t a f i n i s h t i m e = T c o + T d _ b d + T d _ f i + T c y c l e (4) Data \;finish\;time=T_{co}+T_{d\_bd}+T_{d\_fi}+T_{cycle}\tag{4} Datafinishtime=Tco+Td_bd+Td_fi+Tcycle(4)
  数据要求结束的时间有:
D a t a R e q u i r e f i n i s h t i m e = T c y c l e + T c _ d + T c _ b d + T c _ f i + T h (5) Data\;Require\;finish\;time=T_{cycle}+T_{c\_d}+T_{c\_bd}+T_{c\_fi}+T_{h}\tag{5} DataRequirefinishtime=Tcycle+Tc_d+Tc_bd+Tc_fi+Th(5)
  保持时间裕量有:
H o l d S l a c k = D a t a R e q u i r e f i n i s h t i m e − D a t a f i n i s h t i m e = T c o + T d _ b d + T d _ f i + T c y c l e − ( T c y c l e + T c _ d + T c _ b d + T c _ f i + T h ) (6) Hold \;Slack= Data \;Require\;finish\;time-Data \;finish\;time\\ \,\\\qquad\qquad\qquad=T_{co}+T_{d\_bd}+T_{d\_fi}+T_{cycle}-(T_{cycle}+T_{c\_d}+T_{c\_bd}+T_{c\_fi}+T_{h})\tag{6} HoldSlack=DataRequirefinishtimeDatafinishtime=Tco+Td_bd+Td_fi+TcycleTcycle+Tc_d+Tc_bd+Tc_fi+Th(6)
  从公式中可以看出当数据延时取最小值的时候,保持时间裕量最小。

3 INPUT时序约束

  上游器件的时钟和数据一般有两种关系,一种是时钟发射沿和数据的起始对齐,另一种是时钟的发射沿与数据的保持时间中心对齐。一般情况下,数据在两个采样沿中心的时候,对于FPGA是时序最好的时候,而时钟的发射沿与数据对齐的时候,时序最容易出现违例的情况,而且建立时间和保持时间都有可能出现违例。
  input delay 描述的是发射沿与数据的起始位之间的关系。

3.1 input delay 中心对齐

在这里插入图片描述
  当时钟的发射沿与数据的正中心对齐时,这时候的只需要在时序约束中填上数据正中心的发射沿分别距离数据最小以及最大的延时即可,例如一个占空比50%的50MHz时钟,数据采用中心对齐的方式发送,数据的最小以及最大延时均为2ns,那么就要在时序约束的时候约束数据距离时钟的上升沿为8ns和12ns,采样时钟为上升沿。具体的时序约束在最后做,这里先略过。

3.2 input delay 边沿对齐

在这里插入图片描述
  上图是就是边沿对齐的传输方式,这种方式下就会有一个问题,时钟的发射沿相对于数据的延时时多少?

3.2.1 发射时钟与数据起始位对齐

  当将发射时钟与数据起始位对齐时,时序较容易出现保持时序违例,此时的约束里面应该填的就是±2ns,此时看时序报告,是非常容易出现违例的。
  当发射时钟比数据起始位快一个时钟的时候,此时的时序约束就应该填写18ns和22ns。此时看时序报告,时序报告最有可能出现建立时序违例。为什么会出现这种情况呢,首先需要搞明白当我们把最大最小的延时给到VIVADO后,VIVADO是怎么分析的。
在这里插入图片描述
  如图所示,当对时钟进行约束时,假设填的参数中最大最小延时的参考是发射沿与数据起始沿1,那么VIVADO就会默认采样沿采集的数据是数据起始沿1到数据起始沿2之间的数据,假如进入FPGA后时钟比数据快,建立时间能满足要求,但是保持时间不能满足;假如数据比时钟快,数据必须比时钟快2ns+保持时间门限以上保持时间才能满足保持时间的要求。
  假设填的参数中最大最小延时的参考是发射沿与数据起始沿12,那么VIVADO就会默认采样沿采集的数据是数据起始沿2后的一个数据,假如进入FPGA后时钟比数据快,即时钟左移,建立时间一定不能满足要求,但是保持时间能满足;假如数据比时钟快,即时钟右移,保持时间能满足要求,除非数据快2ns+建立时间门限,不然还是违例状态。
  综上所述,在发射沿与数据对齐的时候,一般时序较难满足,会用一些其他方式来调整时序以达到时序收敛。如PLL来调整时钟,或者原语来调整数据。

3.3 PLL调整input delay

  加入PLL后,即使不设置相移,时钟都会出现移相,一般情况下是时钟左移,在时序分析中经过PLL时序会有负数。加入在调节PLL左移,也就是负相的话不需要multicycle设置,而正相移动则需要multicycle设置。

3.4 DDR的input delay

  前面都是单沿采样,也就是都是上升沿采样,但是在实际中会有双沿采样的时候,也就是上升沿与下降沿都发射与采集数据。这时候就需要多做一组时序约束,用来约束下降沿的时序。

4 VIVADO的input delay约束

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/636719.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

前端css中border-radius的简单使用

前端css中border-radius的使用 一、前言二、border-radius语法三、border-radius的模型例子1.源码12.源码1效果截图 四、border-radius的动画效果(动态交互)1.源码22.源码2显示效果 五、结语六、定位日期 一、前言 在CSS中,我们常用border-r…

LE Audio —— Boardcast 与 Unicast 对比

蓝牙低功耗音频(Bluetooth LE Audio,简称:LE Audio)自 2020 年 1月 发布,到 2022 年 7 月完成全套规范的定义。 LE Audio是新一代蓝牙音频技术标准,采用了全新的音频架构,充分利用低功耗蓝牙无…

二维码门楼牌管理应用平台建设:网格化管理的新篇章

文章目录 前言一、二维码门楼牌管理应用平台的建设背景二、二维码门楼牌管理应用平台的功能特点三、二维码门楼牌管理应用平台的实际应用四、二维码门楼牌管理应用平台的前景展望 前言 随着信息技术的飞速发展,二维码门楼牌管理应用平台的建设已成为城市网格化管理…

【Java基础】25.包(package)

文章目录 前言一、包的作用二、创建包三、import 关键字四、package 的目录结构五、设置 CLASSPATH 系统变量 前言 为了更好地组织类,Java 提供了包机制,用于区别类名的命名空间。 一、包的作用 把功能相似或相关的类或接口组织在同一个包中&#xff…

STM32 HAL库 利用CH376进行USB文件读写

STM32 其实可以进行读取USB文件,但仅限于F4以上芯片才可以进行SUB文件读写,但在项目开发中,往往用不到此芯片,那么只能通过外挂的USB芯片进行USB文件读写,本文则是采用STM32F103的SPI与CH376进行通信,通过CH376操作指令进行操作。 1、CH376介绍 CH376芯片 是沁恒的一款文…

Modelsim自动化仿真脚本(TCL)——简单实例

目录 1. Modelsim与TCL脚本的关系 2.实验文件 2.1设计文件 2.2仿真测试文件 2.3. 脚本文件 3. 实验步骤 3.1. 创建文件夹 3.2. 指定路径 3.3. 创建工程 3.4. 运行命令 3.4. 实验效果 1. Modelsim与TCL脚本的关系 TCL(Tool Command Language)是…

Vue.js------Vue组件基础

能够理解Vue组件概念和作用能够掌握封装创建组件能力能够使用组件之间通信能够完成todo案例 一.Vue组件创建和使用 1.折叠面板-实现多个 创建一个文件夹demo 具体步骤请参考vue.js---vue基础 ⚫ 解决方案: 采用vue提供的单.vue文件-组件方式来封装一套然后复用 在component…

C++:面向对象大坑:菱形继承

菱形继承 1.单继承1.概念 2.多继承2.1概念2.2菱形继承1.概念2.问题3.样例理解二义性数据冗余对于内存模型抽象化 2.3菱形虚拟继承(解决菱形继承的问题)1.概念2.样例理解对于内存模型抽象化 2.4总结 3.问题总结1.C有多继承,为什么?…

xpath为元素路径定位

selenium4 pytest支持更多的包 和unittest对比 yaml数据驱动 allure报告 日志 数据库 通过jenkins发送消息 下载chromedriver Chrome for Testing availability https://googlechromelabs.github.io/chrome-for-testing/ 把chromedriver放到python文件夹里面 浏览…

【编译原理】03语法分析

1,语法分析的若干问题 1.1 语法分析器的作用 编译器前端的重要组成部分: (1) 根据词法分析器提供的记号流,为语法正确的输入构造分析树(或语法树)。 (2) 检查输入中的语法(可能包括词法)错误,并调用出错处理器进…

在Gtiee搭建仓库传代码/多人开发/个人代码备份---git同步---TortoiseGit+TortoiseSVN

文章目录 前言1.安装必要软件2. Gitee建立新仓库git同步2.1 Gitee建立新仓库2.2 Gitee仓库基本配置2.3 Git方式进行同步 3. TortoiseGitTortoiseSVN常用开发方式3.1 秘钥相关3.2 TortoiseGit拉取代码TortoiseGit提交代码 4. 其他功能探索总结 前言 正常企业的大型项目都会使用…

HackMyVM-Hommie

目录 信息收集 arp nmap WEB web信息收集 dirsearch ftp tftp ssh连接 提权 系统信息收集 ssh提权 信息收集 arp ┌──(root㉿0x00)-[~/HackMyVM] └─# arp-scan -l Interface: eth0, type: EN10MB, MAC: 08:00:27:77:ed:84, IPv4: 192.168.9.126 Starting arp-…