Problem: 146. LRU 缓存
文章目录
- 题目描述
- 思路
- 复杂度
- Code
题目描述
思路
主要说明大致思路,具体实现看代码。
1.为了实现题目中的O(1)时间复杂度的get与put方法,我们利用哈希表和双链表的结合,将key作为键,对应的链表的节点作为值(也就是在此处我们用一个节点类作为值);
2.定义双链表的节点类,其中包含每次put的键与对应的值,还包括前驱、后驱指针;
3.编写双链表的实现类,并实现:3.1.初始化一个双链表(创建虚拟头、尾节点;由于我们要实现将最就不使用的节点删除,我们在此使用尾插法即每次链表尾部位最近使用的,表头为最久不适用的);
3.2.实现尾插一个节点;
3.3.实现删除一个给定的节点;
3.4.实现从表头删除一个节点(删除最久不使用的节点)
3.5.返回链表的长度
4.实现LRUCache类:
4.1. 创建哈希表map与双链表cache;
4.2. 为了不直接在get与put中对map与cache操作带来麻烦(主要操作是同步在mao中添加key同时在cache中增、删、改对应节点的值),我们封装实现一些API(具体操作实现看代码)
4.3. 实现get与put方法(直接看代码)
复杂度
时间复杂度:
O ( n ) O(n) O(n);其中 n n n为要操作的次数
空间复杂度:
O ( n ) O(n) O(n)
Code
/*** Node class*/
class Node {public int key;public int val;public Node next;public Node prev;public Node(int k, int v) {this.key = k;this.val = v;}
}class DoubleList {//The dummy node of head and tail to a double linked listprivate Node head;private Node tail;//The size of a linked listprivate int size;public DoubleList() {//Initialize the element of double linked listhead = new Node(0, 0);tail = new Node(0, 0);head.next = tail;tail.prev = head;size = 0;}// Add node x at the end of the list, time O(1)// Tail insertion method of bidirectional linked list// with virtual head and tail nodespublic void addLast(Node x) {x.prev = tail.prev;x.next = tail;tail.prev.next = x;tail.prev = x;size++;}// Delete the x node in the linked list (x must exist)// Since it is a double-linked list and given to the target Node,// time O(1)public void remove(Node x) {x.prev.next = x.next;x.next.prev = x.prev;size--;}// Delete the first node in the linked list// and return the node, time O(1)public Node removeFirst() {if (head.next == null) {return null;}Node first = head.next;remove(first);return first;}// Return list length, time O(1)public int size() {return size;}
}class LRUCache {private HashMap<Integer, Node> map;private DoubleList cache;//Max capacityprivate int cap;public LRUCache(int capacity) {this.cap = capacity;map = new HashMap<>();cache = new DoubleList();}// Upgrade a key to the most recently usedprivate void makeRecently(int key) {Node x = map.get(key);// Delete this node from the linked list firstcache.remove(x);// Move back to the end of the linecache.addLast(x);}// Add the most recently used elementprivate void addRecently(int key, int val) {Node x = new Node(key, val);// The end of the list is the most recently used elementcache.addLast(x);// Add the mapping of the key to the mapmap.put(key, x);}// Delete a keyprivate void deleteKey(int key) {Node x = map.get(key);// Delete from the linked listcache.remove(x);// Delete from mapmap.remove(key);}// Delete the element that has been unused the longestprivate void removeLeastRecently() {// The first element at the head of the list is the one// that has been unused for the longest timeNode deletedNode = cache.removeFirst();// Delete its key from the mapint deleteKey = deletedNode.key;map.remove(deleteKey);}public int get(int key) {if (!map.containsKey(key)) {return -1;}// Upgrade the data to the most recently usedmakeRecently(key);return map.get(key).val;}public void put(int key, int value) {if (map.containsKey(key)) {// Delete old datadeleteKey(key);// The newly inserted data is the latest dataaddRecently(key, value);return;}if (cap == cache.size()) {// Delete the element that has been unused the longestremoveLeastRecently();}// Add as recently used elementaddRecently(key, value);}
}/*** Your LRUCache object will be instantiated and called as such:* LRUCache obj = new LRUCache(capacity);* int param_1 = obj.get(key);* obj.put(key,value);*/