机器学习-10-神经网络python实现-从零开始

文章目录

    • 总结
    • 参考
    • 本门课程的目标
    • 机器学习定义
    • 从零构建神经网络
      • 手写数据集MNIST介绍
      • 代码读取数据集MNIST
      • 神经网络实现
      • 测试手写的图片
    • 带有反向查询的神经网络实现

总结

本系列是机器学习课程的系列课程,主要介绍基于python实现神经网络。

参考

BP神经网络及python实现(详细)

本文来源原文链接:https://blog.csdn.net/weixin_66845445/article/details/133828686

用Python从0到1实现一个神经网络(附代码)!

python神经网络编程代码https://gitee.com/iamyoyo/makeyourownneuralnetwork.git

本门课程的目标

完成一个特定行业的算法应用全过程:

懂业务+会选择合适的算法+数据处理+算法训练+算法调优+算法融合
+算法评估+持续调优+工程化接口实现

机器学习定义

关于机器学习的定义,Tom Michael Mitchell的这段话被广泛引用:
对于某类任务T性能度量P,如果一个计算机程序在T上其性能P随着经验E而自我完善,那么我们称这个计算机程序从经验E中学习
在这里插入图片描述

从零构建神经网络

手写数据集MNIST介绍

mnist_dataset

MNIST数据集是一个包含大量手写数字的集合。 在图像处理领域中,它是一个非常受欢迎的数据集。 经常被用于评估机器学习算法的性能。 MNIST是改进的标准与技术研究所数据库的简称。 MNIST 包含了一个由 70,000 个 28 x 28 的手写数字图像组成的集合,涵盖了从0到9的数字。

本文通过神经网络基于MNIST数据集进行手写识别。

代码读取数据集MNIST

导入库

import numpy
import matplotlib.pyplot

读取mnist_train_100.csv

# open the CSV file and read its contents into a list
data_file = open("mnist_dataset/mnist_train_100.csv", 'r')
data_list = data_file.readlines()
data_file.close()

查看数据集的长度

# check the number of data records (examples)
len(data_list)
# 输出为 100

查看一条数据,这个数据是手写数字的像素值

# show a dataset record
# the first number is the label, the rest are pixel colour values (greyscale 0-255)
data_list[1]

输出为:
在这里插入图片描述
需要注意的是,这个字符串的第一个字为真实label,比如

data_list[50]

输出为:
在这里插入图片描述

这个输出看不懂,因为这是一个很长的字符串,我们对其进行按照逗号进行分割,然后输出为28*28的,就能看出来了

# take the data from a record, rearrange it into a 28*28 array and plot it as an image
all_values = data_list[50].split(',')
num=0
for i in all_values[1:]:num = num +1print("%-3s"%(i),end=' ')if num==28:num = 0print('',end='\n')

输出为:
在这里插入图片描述

通过用图片的方式查看

# take the data from a record, rearrange it into a 28*28 array and plot it as an image
all_values = data_list[50].split(',')
image_array = numpy.asfarray(all_values[1:]).reshape((28,28))
matplotlib.pyplot.imshow(image_array, cmap='Greys', interpolation='None')

输出为:
在这里插入图片描述

这个像素值为0-255,对其进行归一化操作

# scale input to range 0.01 to 1.00
scaled_input = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01
# print(scaled_input)
scaled_input

输出为:
在这里插入图片描述

构建一个包含十个输出的标签

#output nodes is 10 (example)
onodes = 10
targets = numpy.zeros(onodes) + 0.01
targets[int(all_values[0])] = 0.99
# print(targets)
targets

输出为:
在这里插入图片描述

神经网络实现

导入库

import numpy
# scipy.special for the sigmoid function expit()
import scipy.special
# library for plotting arrays
import matplotlib.pyplot

神经网络实现

# neural network class definition
# 神经网络类定义
class neuralNetwork:# initialise the neural network# 初始化神经网络def __init__(self, inputnodes, hiddennodes, outputnodes, learningrate):# set number of nodes in each input, hidden, output layer# 设置每个输入、隐藏、输出层的节点数self.inodes = inputnodesself.hnodes = hiddennodesself.onodes = outputnodes# link weight matrices, wih and who# weights inside the arrays are w_i_j, where link is from node i to node j in the next layer# w11 w21# w12 w22 etc # 链接权重矩阵,wih和who# 数组内的权重w_i_j,链接从节点i到下一层的节点j# w11 w21# w12 w22 等等self.wih = numpy.random.normal(0.0, pow(self.inodes, -0.5), (self.hnodes, self.inodes))self.who = numpy.random.normal(0.0, pow(self.hnodes, -0.5), (self.onodes, self.hnodes))# learning rate 学习率self.lr = learningrate# activation function is the sigmoid function# 激活函数是sigmoid函数self.activation_function = lambda x: scipy.special.expit(x)pass# train the neural network# 训练神经网络def train(self, inputs_list, targets_list):# convert inputs list to 2d array# 将输入列表转换为2d数组inputs = numpy.array(inputs_list, ndmin=2).Ttargets = numpy.array(targets_list, ndmin=2).T# calculate signals into hidden layer# 计算输入到隐藏层的信号hidden_inputs = numpy.dot(self.wih, inputs)# calculate the signals emerging from hidden layer# 计算从隐藏层输出的信号hidden_outputs = self.activation_function(hidden_inputs)# calculate signals into final output layer# 计算最终输出层的信号final_inputs = numpy.dot(self.who, hidden_outputs)# calculate the signals emerging from final output layer# 计算从最终输出层输出的信号final_outputs = self.activation_function(final_inputs)# output layer error is the (target - actual)# 输出层误差是(目标 - 实际)output_errors = targets - final_outputs# hidden layer error is the output_errors, split by weights, recombined at hidden nodes# 隐藏层误差是输出层误差,按权重分解,在隐藏节点重新组合hidden_errors = numpy.dot(self.who.T, output_errors) # update the weights for the links between the hidden and output layers# 更新隐藏层和输出层之间的权重self.who += self.lr * numpy.dot((output_errors * final_outputs * (1.0 - final_outputs)), numpy.transpose(hidden_outputs))# update the weights for the links between the input and hidden layers# 更新输入层和隐藏层之间的权重self.wih += self.lr * numpy.dot((hidden_errors * hidden_outputs * (1.0 - hidden_outputs)), numpy.transpose(inputs))pass# query the neural network# 查询神经网络def query(self, inputs_list):# convert inputs list to 2d array# 将输入列表转换为2d数组inputs = numpy.array(inputs_list, ndmin=2).T# calculate signals into hidden layer# 计算输入到隐藏层的信号hidden_inputs = numpy.dot(self.wih, inputs)# calculate the signals emerging from hidden layer# 计算从隐藏层输出的信号hidden_outputs = self.activation_function(hidden_inputs)# calculate signals into final output layer# 计算最终输出层的信号final_inputs = numpy.dot(self.who, hidden_outputs)# calculate the signals emerging from final output layer# 计算从最终输出层输出的信号final_outputs = self.activation_function(final_inputs)return final_outputs

定义参数,并初始化神经网络

# number of input, hidden and output nodes
input_nodes = 784
hidden_nodes = 200
output_nodes = 10# learning rate
learning_rate = 0.1# create instance of neural network
n = neuralNetwork(input_nodes,hidden_nodes,output_nodes, learning_rate)
n # <__main__.neuralNetwork at 0x2778590e5e0>

查看数据集

# load the mnist training data CSV file into a list
training_data_file = open("mnist_dataset/mnist_train.csv", 'r')
training_data_list = training_data_file.readlines()
training_data_file.close()
len(training_data_list) # 60001
# 其中第1行为列名 ,后面需要去掉,只保留后60000条

开始训练,该步骤需要等待一会,才能训练完成

# train the neural network
# 训练神经网络
# epochs is the number of times the training data set is used for training
# epochs次数,循环训练5次
epochs = 5for e in range(epochs):# go through all records in the training data set# 每次取60000条数据,剔除列名for record in training_data_list[1:]:# split the record by the ',' commas# 用逗号分割all_values = record.split(',')# scale and shift the inputs# 对图像的像素值进行归一化操作inputs = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01# create the target output values (all 0.01, except the desired label which is 0.99)# 创建一个包含十个输出的向量,初始值为0.01targets = numpy.zeros(output_nodes) + 0.01# all_values[0] is the target label for this record# 对 label的 位置设置为0.99targets[int(all_values[0])] = 0.99# 开始训练n.train(inputs, targets)passpass

查看训练后的权重

n.who.shape # (10, 200)
n.who

输出为:
在这里插入图片描述

n.wih.shape # ((200, 784)
n.wih

输出为:
在这里插入图片描述

查看测试集

# load the mnist test data CSV file into a list
test_data_file = open("mnist_dataset/mnist_test.csv", 'r')
test_data_list = test_data_file.readlines()
test_data_file.close()
len(test_data_list) # 10001
# 其中第1行为列名 ,后面需要去掉,只保留后10000条

预测测试集

# test the neural network
# 测试网络
# scorecard for how well the network performs, initially empty
# 计算网络性能,初始为空
scorecard = []# go through all the records in the test data set
# 传入所有的测试集
for record in test_data_list[1:]:# split the record by the ',' commas# 使用逗号分割all_values = record.split(',')# correct answer is first value# 获取当前的测试集的labelcorrect_label = int(all_values[0])# scale and shift the inputs# 归一化操作inputs = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01# query the network# 对测试集进行预测outputs = n.query(inputs)# the index of the highest value corresponds to the label# 获取输出中最大的概率的位置label = numpy.argmax(outputs)# append correct or incorrect to list# 按照预测的正确与否分别填入1和0if (label == correct_label):# network's answer matches correct answer, add 1 to scorecard# 答案匹配正确,输入1scorecard.append(1)else:# network's answer doesn't match correct answer, add 0 to scorecard# 答案不匹配,输入0scorecard.append(0)passpass

计算网络性能

# calculate the performance score, the fraction of correct answers
scorecard_array = numpy.asarray(scorecard)
print ("performance = ", scorecard_array.sum() / scorecard_array.size)
# performance =  0.9725

输出为:

performance = 0.9725

测试手写的图片

导入库

# helper to load data from PNG image files
import imageio.v3
# glob helps select multiple files using patterns
import glob

定义数据集列表

# our own image test data set
our_own_dataset = []

读取多个数据

# glob.glob获取一个可编历对象,使用它可以逐个获取匹配的文件路径名。glob.glob同时获取所有的匹配路径
for image_file_name in glob.glob('my_own_images/2828_my_own_?.png'):# 输出 匹配到的文件print ("loading ... ", image_file_name)# use the filename to set the correct label# 文件名中包含了文件的正确标签label = int(image_file_name[-5:-4])# load image data from png files into an array# 把 图片转换为 文本img_array = imageio.v3.imread(image_file_name, mode='F')# reshape from 28x28 to list of 784 values, invert values# 把28*28的矩阵转换为 784和1维img_data  = 255.0 - img_array.reshape(784)# then scale data to range from 0.01 to 1.0# 对数据进行归一化操作,最小值为0.01img_data = (img_data / 255.0 * 0.99) + 0.01print(numpy.min(img_data))print(numpy.max(img_data))# append label and image data  to test data set# 把 laebl和图片拼接起来record = numpy.append(label,img_data)print(record.shape)# 把封装好的 一维存储在列表中our_own_dataset.append(record)pass

读取的数据如下:

在这里插入图片描述
输出为,
在这里插入图片描述

查看手写的图片

matplotlib.pyplot.imshow(our_own_dataset[0][1:].reshape(28,28), cmap='Greys', interpolation='None')

输出为:
在这里插入图片描述

输出对应的像数值

# print(our_own_dataset[0])
print(our_own_dataset[0][0],"\n",our_own_dataset[0][1:20])

输出如下:
在这里插入图片描述

测试手写数据效果

own_list = []
for i in our_own_dataset:correct_label = i[0]img_data = i[1:]# query the networkoutputs = n.query(img_data)
#     print ('outputs预测',outputs)# the index of the highest value corresponds to the labellabel = numpy.argmax(outputs)print('真实',correct_label,"network says ", label)if (label == correct_label):# network's answer matches correct answer, add 1 to scorecardown_list.append(1)else:# network's answer doesn't match correct answer, add 0 to scorecardown_list.append(0)print("own_list",own_list)

输出为:
在这里插入图片描述

带有反向查询的神经网络实现

该部分代码与 从零构建神经网络大多类似,代码如下:

导入库

import numpy
# scipy.special for the sigmoid function expit(), and its inverse logit()
import scipy.special
# library for plotting arrays
import matplotlib.pyplot

定义带有反向查询的神经网络

# neural network class definition
# 神经网络类定义
class neuralNetwork:# initialise the neural network# 初始化神经网络def __init__(self, inputnodes, hiddennodes, outputnodes, learningrate):# set number of nodes in each input, hidden, output layer# 设置每个输入、隐藏、输出层的节点数self.inodes = inputnodesself.hnodes = hiddennodesself.onodes = outputnodes# link weight matrices, wih and who# weights inside the arrays are w_i_j, where link is from node i to node j in the next layer# w11 w21# w12 w22 etc # 链接权重矩阵,wih和who# 数组内的权重w_i_j,链接从节点i到下一层的节点j# w11 w21# w12 w22 等等self.wih = numpy.random.normal(0.0, pow(self.inodes, -0.5), (self.hnodes, self.inodes))self.who = numpy.random.normal(0.0, pow(self.hnodes, -0.5), (self.onodes, self.hnodes))# learning rate 学习率self.lr = learningrate# activation function is the sigmoid function# 激活函数是sigmoid函数self.activation_function = lambda x: scipy.special.expit(x)self.inverse_activation_function = lambda x: scipy.special.logit(x)pass# train the neural network# 训练神经网络def train(self, inputs_list, targets_list):# convert inputs list to 2d array# 将输入列表转换为2d数组inputs = numpy.array(inputs_list, ndmin=2).Ttargets = numpy.array(targets_list, ndmin=2).T# calculate signals into hidden layer# 计算输入到隐藏层的信号hidden_inputs = numpy.dot(self.wih, inputs)# calculate the signals emerging from hidden layer# 计算从隐藏层输出的信号hidden_outputs = self.activation_function(hidden_inputs)# calculate signals into final output layer# 计算最终输出层的信号final_inputs = numpy.dot(self.who, hidden_outputs)# calculate the signals emerging from final output layer# 计算从最终输出层输出的信号final_outputs = self.activation_function(final_inputs)# output layer error is the (target - actual)# 输出层误差是(目标 - 实际)output_errors = targets - final_outputs# hidden layer error is the output_errors, split by weights, recombined at hidden nodes# 隐藏层误差是输出层误差,按权重分解,在隐藏节点重新组合hidden_errors = numpy.dot(self.who.T, output_errors) # update the weights for the links between the hidden and output layers# 更新隐藏层和输出层之间的权重self.who += self.lr * numpy.dot((output_errors * final_outputs * (1.0 - final_outputs)), numpy.transpose(hidden_outputs))# update the weights for the links between the input and hidden layers# 更新输入层和隐藏层之间的权重self.wih += self.lr * numpy.dot((hidden_errors * hidden_outputs * (1.0 - hidden_outputs)), numpy.transpose(inputs))pass# query the neural network# 查询神经网络def query(self, inputs_list):# convert inputs list to 2d array# 将输入列表转换为2d数组inputs = numpy.array(inputs_list, ndmin=2).T# calculate signals into hidden layer# 计算输入到隐藏层的信号hidden_inputs = numpy.dot(self.wih, inputs)# calculate the signals emerging from hidden layer# 计算从隐藏层输出的信号hidden_outputs = self.activation_function(hidden_inputs)# calculate signals into final output layer# 计算最终输出层的信号final_inputs = numpy.dot(self.who, hidden_outputs)# calculate the signals emerging from final output layer# 计算从最终输出层输出的信号final_outputs = self.activation_function(final_inputs)return final_outputs# backquery the neural network# we'll use the same termnimology to each item, # eg target are the values at the right of the network, albeit used as input# eg hidden_output is the signal to the right of the middle nodes# 反向 查询def backquery(self, targets_list):# transpose the targets list to a vertical array# 将目标列表转置为垂直数组final_outputs = numpy.array(targets_list, ndmin=2).T# calculate the signal into the final output layer# 计算最终输出层的输入信号final_inputs = self.inverse_activation_function(final_outputs)# calculate the signal out of the hidden layer# 计算隐藏层的输出信号hidden_outputs = numpy.dot(self.who.T, final_inputs)# scale them back to 0.01 to .99# 将隐藏层的输出信号缩放到0.01到0.99之间hidden_outputs -= numpy.min(hidden_outputs)hidden_outputs /= numpy.max(hidden_outputs)hidden_outputs *= 0.98hidden_outputs += 0.01# calculate the signal into the hidden layer# 计算隐藏层的输入信号hidden_inputs = self.inverse_activation_function(hidden_outputs)# calculate the signal out of the input layer# 计算输入层的输出信号inputs = numpy.dot(self.wih.T, hidden_inputs)# scale them back to 0.01 to .99# 将输入层的输出信号缩放到0.01到0.99之间inputs -= numpy.min(inputs)inputs /= numpy.max(inputs)inputs *= 0.98inputs += 0.01return inputs

初始化神经网络

# number of input, hidden and output nodes
# 定义网络的输入 隐藏 输出节点数量
input_nodes = 784
hidden_nodes = 200
output_nodes = 10# learning rate
# 学习率
learning_rate = 0.1# create instance of neural network
# 实例化网络
n = neuralNetwork(input_nodes,hidden_nodes,output_nodes, learning_rate)

加载数据集

# load the mnist training data CSV file into a list
training_data_file = open("mnist_dataset/mnist_train.csv", 'r')
training_data_list = training_data_file.readlines()
training_data_file.close()

训练模型

# train the neural network# epochs is the number of times the training data set is used for training
epochs = 5for e in range(epochs):print("\n epochs------->",e)num = 0# go through all records in the training data setdata_list = len(training_data_list[1:])for record in training_data_list[1:]:# split the record by the ',' commasall_values = record.split(',')# scale and shift the inputsinputs = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01# create the target output values (all 0.01, except the desired label which is 0.99)targets = numpy.zeros(output_nodes) + 0.01# all_values[0] is the target label for this recordtargets[int(all_values[0])] = 0.99n.train(inputs, targets)num +=1 if num %500==0:print("\r epochs {} 当前进度为 {}".format(e,num/data_list),end="")passpass

输出为:

epochs-------> 0
epochs 0 当前进度为 1.091666666666666744
epochs-------> 1
epochs 1 当前进度为 1.091666666666666744
epochs-------> 2
epochs 2 当前进度为 1.091666666666666744
epochs-------> 3
epochs 3 当前进度为 1.091666666666666744
epochs-------> 4
epochs 4 当前进度为 1.091666666666666744

加载测试数据

# load the mnist test data CSV file into a list
test_data_file = open("mnist_dataset/mnist_test.csv", 'r')
test_data_list = test_data_file.readlines()
test_data_file.close()

加载测试数据

# test the neural network# scorecard for how well the network performs, initially empty
scorecard = []# go through all the records in the test data set
for record in test_data_list[1:]:# split the record by the ',' commasall_values = record.split(',')# correct answer is first valuecorrect_label = int(all_values[0])# scale and shift the inputsinputs = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01# query the networkoutputs = n.query(inputs)# the index of the highest value corresponds to the labellabel = numpy.argmax(outputs)# append correct or incorrect to listif (label == correct_label):# network's answer matches correct answer, add 1 to scorecardscorecard.append(1)else:# network's answer doesn't match correct answer, add 0 to scorecardscorecard.append(0)passpass

计算模型性能

# calculate the performance score, the fraction of correct answers
scorecard_array = numpy.asarray(scorecard)
print ("performance = ", scorecard_array.sum() / scorecard_array.size)
# performance =  0.9737

根据模型反向生成图片

# run the network backwards, given a label, see what image it produces# label to test
label = 0
# create the output signals for this label
targets = numpy.zeros(output_nodes) + 0.01
# all_values[0] is the target label for this record
targets[label] = 0.99
print(targets)# get image data
image_data = n.backquery(targets)# plot image data
matplotlib.pyplot.imshow(image_data.reshape(28,28), cmap='Greys', interpolation='None')

输出为:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/640734.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

stm32——GPIO学习

对于许多刚入门stm32的同学们来说&#xff0c;GPIO是我们的第一课&#xff0c;初出茅庐的我们会对GPIO的配置感到疑惑不解&#xff0c;也是劝退我们的第一课&#xff0c;今天我们就来一起学习一下stm32的GPIO&#xff0c;提振一下信心。好的&#xff0c;发车了小卷卷们&#xf…

力扣146. LRU 缓存

Problem: 146. LRU 缓存 文章目录 题目描述思路复杂度Code 题目描述 思路 主要说明大致思路&#xff0c;具体实现看代码。 1.为了实现题目中的O(1)时间复杂度的get与put方法&#xff0c;我们利用哈希表和双链表的结合&#xff0c;将key作为键&#xff0c;对应的链表的节点作为…

【前后端】django前后端交互

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、django是什么二、django前后端交互指引三、总结 前言 随着开发语言及人工智能工具的普及&#xff0c;使得越来越多的人会主动学习使用一些开发语言&#x…

零售数据分析方案:深度剖析人、货、场

人&#xff0c;即会员分析、用户分析&#xff0c;通过分析获得直观的用户画像&#xff0c;了解目标用户群体的消费水平、喜好、频率&#xff0c;为销售营销决策提供必要的数据支持&#xff1b;货&#xff0c;即商品分析&#xff0c;包括但不限于分析商品结构、分析销售top10商品…

构建云原生湖仓:Apache Iceberg与Amoro的结合实践

随着大数据技术的快速发展&#xff0c;企业对数据的处理和分析需求日益增长。传统的数据仓库已逐渐无法满足现代业务对数据多样性和实时性的要求&#xff0c;这促使了数据湖和数据仓库的融合&#xff0c;即湖仓一体架构的诞生。在云原生技术的推动下&#xff0c;构建云原生湖仓…

Opensbi初始化分析:设备初始化

Opensbi初始化分析&#xff1a;设备初始化 设备初始化sbi_init函数coldinit&#xff0c;冷启动初始化sbi_scratch_init函数sbi_domain_init函数sbi_hsm_initsbi_platform_early_initsbi_hart_initsbi_console_initsbi_platform_irqchip_init中断控制器的初始化sbi_ipi_init函数…

C++奇迹之旅:从0开始实现日期时间计算器

文章目录 &#x1f4dd;前言&#x1f320; 头文件Date.h&#x1f309;日期计算函数&#x1f320;前后置&#x1f309;前后置-- &#x1f320;两对象日期相减&#x1f309;自定义流输入和输出 &#x1f309; 代码&#x1f309; 头文件Date.h&#x1f320;Date.cpp&#x1f309; …

数据挖掘实验(Apriori,fpgrowth)

Apriori&#xff1a;这里做了个小优化&#xff0c;比如abcde和adcef自连接出的新项集abcdef&#xff0c;可以用abcde的位置和f的位置取交集&#xff0c;这样第n项集的计算可以用n-1项集的信息和数字本身的位置信息计算出来&#xff0c;只需要保存第n-1项集的位置信息就可以提速…

在Qt creator中使用多光标

2024年4月22日&#xff0c;周一下午 Qt Creator 支持多光标模式。 多光标模式允许你在同一时间在多个光标位置进行编辑&#xff0c;从而可以更快地进行一些重复性的编辑操作。 要启用多光标模式&#xff0c;请按住 Alt 键&#xff0c;并用鼠标左键在文本编辑器中选择多个光标…

标题Selenium IDE 常见错误笔记

Selenium IDE 常见错误笔记 错误1&#xff1a;Failed:Exceeded waiting time for new window to appear 2000ms 这个错误通常出现在第一次运行时&#xff0c;有两个原因&#xff1a; Firefox阻止了弹出式窗口&#xff0c;在浏览器设置里允许这个操作即可。 有些网站设置了反…

Elasticsearch单机部署(Linux)

1. 准备环境 本文中Elasticsearch版本为7.12.0&#xff0c;JDK版本为1.8.0&#xff0c;Linux环境部署。 扩展&#xff1a; &#xff08;1&#xff09;查看Elasticsearch对应的常用的jdk版本如下&#xff1a;&#xff08;详情可看官网的支持一览表&#xff09; Elasticsearch a…

基于51单片机的电子秤LCD1602液晶显示( proteus仿真+程序+设计报告+讲解视频)

基于51单片机电子秤LCD显示 1. 主要功能&#xff1a;2. 讲解视频&#xff1a;3. 仿真设计4. 程序代码5. 设计报告6. 设计资料内容清单&&下载链接 基于51单片机电子秤LCD显示( proteus仿真程序设计报告讲解视频&#xff09; 仿真图proteus8.9及以上 程序编译器&#xf…