微软刚开源就删库的WizardLM-2:MT-Bench 榜单评测超越GPT-4,7B追平Qwen1.5-32B

前言

微软最近发布的WizardLM-2大型语言模型因其先进的技术规格和短暂的开源后突然撤回,引起了科技界的广泛关注。WizardLM-2包括三个不同规模的模型,分别是8x22B、70B和7B,均展现了在多语言处理、复杂对话、推理和代理任务上的卓越能力。

  • Huggingface模型下载:https://huggingface.co/MaziyarPanahi/WizardLM-2-7B-GGUF

  • AI快站模型免费加速下载:https://aifasthub.com/models/MaziyarPanahi

模型性能和架构

WizardLM-2系列模型在多个基准测试中表现出色。其中,7B版本在基准任务上与Qwen1.5-32B相当;70B版本超过了同类的GPT-4-0613;最高规格的8x22B版本则在MT-Bench上取得了9.12的高分,超越了所有现有的GPT-4版本。这些成绩彰显了微软在模型优化和多任务处理技术上的领先地位。

独特的训练方法

WizardLM-2的训练方法体现了多个创新点:

  • 加权抽样和数据预处理: 微软通过分析数据源中不同属性的分布情况,并通过加权抽样调整训练数据中各属性的权重,使得最终的数据集更符合实际应用场景的需要。

  • 渐进式学习: 与传统的全量数据训练不同,微软采用渐进式学习方法,通过逐步增加训练数据的复杂性,使模型能在较少的数据中学到更有效的信息。

  • Evol Lab和AI Align AI: 这一框架允许多个最先进的语言模型相互教学和改进。Evol-Instruct和Evol-Answer的方法使模型能自动生成高质量的指令并优化响应。

训练阶段的详细创新
  • Evol-Instruct和Evol-Answer: 这两种方法通过重新设计和评估指令生成过程,增强了模型生成指令的质量和响应的相关性。

  • 监督学习与强化学习的结合使用: 通过结合使用监督学习和强化学习,微软优化了模型的学习过程。特别是,通过Stage-DPO和RLEIF技术,模型能在离线和在线环境下进行更为精确的学习和优化。

撤回原因与未来展望

尽管WizardLM-2在技术上取得了显著进展,但微软因忘记进行毒性测试而短暂撤回了模型。这一事件突显了在开发和部署前对AI模型进行全面测试的重要性,确保技术的安全性和可靠性。

结论

WizardLM-2的开发和短暂撤回事件虽然带来了一定的争议,但也展示了微软在人工智能领域的强大实力和对高标准的承诺。预计在完成必要的测试和优化后,这些模型将为AI研究和应用带来新的可能性,特别是在处理多语言和复杂交互任务方面。微软的这一步也可能推动整个行业向更开放、更安全的AI应用方向迈进。

模型下载

Huggingface模型下载

https://huggingface.co/MaziyarPanahi/WizardLM-2-7B-GGUF

AI快站模型免费加速下载

https://aifasthub.com/models/MaziyarPanahi

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/640938.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MySQL—一条查询SQL语句的完整执行流程

MySQL—一条查询SQL语句的完整执行流程 表结构和数据如下: 我们分析的sql语句如下: select tb_id,tb_name,tb_address from tb_user where tb_id 66;大体来说,MySQL可以分为Server层和存储引擎层两部分: Server层 包括:连接器、查询缓存、…

OpenTelemetry-1.介绍

目录 1.是什么 2.为什么使用 OpenTelemetry 3.数据类型 Tracing Metrics Logging Baggage 4.架构图 5.核心概念 6.相关开源项目 ​编辑 7.分布式追踪的起源 8.百花齐放的分布式追踪 Zipkin Skywalking Pinpoint Jaeger OpenCensus OpenTracing 9.Openteleme…

shell进阶之正则表达式:字符转义(十七)

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 优质专栏:多媒…

【LLM】向量知识库

文章目录 认识向量知识库向量Embeddings向量数据库向量数据库的作用向量数据库与传统数据库的区别 Embedding API使用公有Embedding API自定义一个Embeedding API 常见文本数据的预处理搭建并使用向量数据库思考向量数据库在LLM中的价值体现向量的妙用,可行&#xf…

vue 请求php接口 header 传自定义参数 提示cors 跨域问题

前端地址 http://192.168.0.125:4021 请求后端地址的时候报 from origin http://192.168.0.125:4021 has been blocked by CORS policy: Request header field userid is not allowed by Access-Control-Allow-Headers in preflight response. 大概意思是请求 header里有个…

vue整合Echarts

首先打开网址https://echarts.apache.org/examples/zh/index.html 进入Echars官网找到自己想要的图形我这里选择的是柱形图 点开完整代码直接cv大法 下载Echars的npm npm install echarts 在vue里面挂在个div 导入相关包 写个方法 就是cv过来的 然后改成后端传过来的值…

OpenCV轻松入门(九)——使用第三方库imgaug自定义数据增强器

安装命令:pip install imgaug 代码实现: import cv2 import random import matplotlib.pyplot as pltfrom imgaug import augmenters as iaa # 数据增强——缩放效果 def zoom_img(img):# 获取一个1-1.3倍的线性图像处理器,scale参数是缩放范…

使用Unity扫描场景内的二维码,使用插件ZXing

使用Unity扫描场景内的二维码,使用插件ZXing 使用Unity扫描场景内的二维码,ZXing可能没有提供场景内扫描的方法,只有调用真实摄像机扫描二维码的方法。 实现的原理是:在摄像机上添加脚本,发射射线,当射线打…

Android Studio开发工具学习之Git远程仓库拉取与推送

Git远程仓库操作 1.1 推送项目到远端服务器1.1.1 进入Gitee或Github、创建一个新的仓库1.1.2 将Android Studio中项目推送至Gitee 1.2 从远端服务器拉取项目1.2.1 AS工程页拉取新项目1.2.2 AS启动页拉取项目 1.1 推送项目到远端服务器 1.1.1 进入Gitee或Github、创建一个新的仓…

Qt 跨平台开发

Qt 跨平台开发 文章目录 Qt 跨平台开发摘要第一 \ & /第二 神奇{不能换行显示第三 预处理宏 关键字: Qt、 win、 linux、 lib、 MSVC 摘要 最近一直在琢磨Qt跨平台开发的问题,缘由有以下几个, 首先第一个,我们目前开发…

Hive 表添加列(新增字段)

前言 记录总结一下 Hive 表如何添加新的字段以及遇到的问题。 最初是因为要验证 Hudi Schema Evolution 中的增加字段问题 SQL alter table test_hive add columns (col_new string);# 级联应用到分区表的所有分区 # 对于 Parquet、Text 分区表需要加cascade , OR…

STM32F1串口

文章目录 1 数据通信的基础概念1.11.21.31.41.5 2 串口(RS-232)2.12.22.32.42.5 3 STM32的USART3.13.23.33.53.9 USART寄存器介绍 4 HAL库外设初始化MSP回调机制5 HAL库中断回调机制6 USART/UART异步通信配置步骤 (包括HAL库相关函数)6.16.26…