电机控制专题(一)——最大转矩电流比MTPA控制

文章目录

  • 电机控制专题(一)——最大转矩电流比MTPA控制
    • 前言
    • 理论推导
    • 仿真验证
      • 轻载1N·m
      • 重载30N·m
    • 总结

电机控制专题(一)——最大转矩电流比MTPA控制

前言

MTPA全称为Max Torque Per Ampere,从字面意思就可以知道MTPA算法的目的是一个寻优最值问题,可以从以下两个角度理解。

  • 在同一电磁转矩需求下,如何利用最小幅值的定子电流来产生;
  • 在同一额定电流情况下,如何合理利用定子电流产生最大的电磁转矩

本文先从理论推导开始,再到仿真验证MTPA算法,总结MTPA的相关知识。

纯小白,如有不当,轻喷,还请指出。

理论推导

记转矩角(电流矢量与d轴夹角)为 γ \gamma γ,则dq轴电流可以表示如下:
i d = I s c o s γ i_d=I_s cos\gamma id=Iscosγ (1)
i q = I s s i n γ i_q=I_s sin\gamma iq=Issinγ (2)
其中 I s I_s Is为定子电流幅值。

dq轴下PMSM的转矩方程为:
T e = 3 2 p n i q ψ + ( L d − L q ) i d i q T_e = \frac{3}{2}p_ni_q\psi+(L_d-L_q)i_di_q Te=23pniqψ+(LdLq)idiq(3)
其中 p n p_n pn为极对数, ψ \psi ψ为永磁体磁链, L d , L q L_d,L_q Ld,Lq为分别为dq轴的电感。式(4)右边的第一项成为永磁转矩,第二项称为磁阻转矩。

将式(1)(2)代入式(3)并化简可得
T e = 3 2 p n I s ψ s i n γ + 3 4 p n I s 2 ( L d − L q ) s i n 2 γ T_e=\frac{3}{2}p_nI_s\psi sin\gamma + \frac{3}{4}p_nI_s^2(L_d-L_q)sin2\gamma Te=23pnIsψsinγ+43pnIs2(LdLq)sin2γ (4)

MTPA可以从两个角度理解

  1. 最小的电流产生同等大的电磁转矩
  2. 同等大小的定子电流产生最大的电磁转矩

因此从第二个角度理解MTPA,就变成了求(4)式的在 I s I_s Is恒定,以转矩角 γ \gamma γ为变量的极值问题

对(4)式求偏导并另其等于0,化简可得:
∂ T e ∂ γ = 2 I s ( L d − L q ) c o s 2 γ + ψ c o s γ − I s ( L d − L q ) = 0 \frac{\partial T_e}{\partial \gamma}=2I_s(L_d-L_q)cos^2\gamma +\psi cos\gamma -I_s(L_d-L_q)=0 γTe=2Is(LdLq)cos2γ+ψcosγIs(LdLq)=0 (5)

(5)式是一个一元二次方程,利用求根公式可解得
c o s γ 1 = − ψ + ψ 2 + 8 I s 2 ( L d − L q ) 4 I s ( L d − L q ) , c o s γ 2 = − ψ − ψ 2 + 8 I s 2 ( L d − L q ) 4 I s ( L d − L q ) cos \gamma_1 = \frac{-\psi + \sqrt{\psi^2+8I_s^2(L_d-L_q)}}{4I_s(L_d-L_q)} ,cos \gamma_2 = \frac{-\psi -\sqrt{\psi^2+8I_s^2(L_d-L_q)}}{4I_s(L_d-L_q)} cosγ1=4Is(LdLq)ψ+ψ2+8Is2(LdLq) ,cosγ2=4Is(LdLq)ψψ2+8Is2(LdLq) (6)

求解得到的两个转矩角究竟哪一个是我们想要的呢?

容易注意到 ψ < ψ 2 + 8 I s 2 ( L d − L q ) 2 \psi < \sqrt{\psi^2+8I_s^2(L_d-L_q)^2} ψ<ψ2+8Is2(LdLq)2 ,且绝大多数的IPMSM的d轴电感小于q轴电感。因此 c o s γ 1 < 0 , c o s γ 2 > 0 cos\gamma_1<0,cos\gamma_2>0 cosγ1<0,cosγ2>0

MTPA就是要利用电机的凸极效应,合理分配定子电流一部分作为 i d i_d id,另一部分作为 i q i_q iq i d i_d id可以用于产生磁阻转矩(电磁转矩式3等式右边的第二项)。因此d轴电流只能是负的。

那么由式(1)可知 c o s γ < 0 cos \gamma<0 cosγ<0

因此真正能实现MTPA的转矩角为
γ = a r c c o s ( − ψ + ψ 2 + 8 I s 2 ( L d − L q ) 4 I s ( L d − L q ) ) \gamma =arccos( \frac{-\psi +\sqrt{\psi^2+8I_s^2(L_d-L_q)}}{4I_s(L_d-L_q)}) γ=arccos(4Is(LdLq)ψ+ψ2+8Is2(LdLq) ) (7)

此时的d轴电流和q轴电流可计算得
i d = I s c o s γ = I s − ψ + ψ 2 + 8 I s 2 ( L d − L q ) 4 ( L d − L q ) i_d = I_scos\gamma =I_s \frac{-\psi +\sqrt{\psi^2+8I_s^2(L_d-L_q)}}{4(L_d-L_q)} id=Iscosγ=Is4(LdLq)ψ+ψ2+8Is2(LdLq) (8)
i q = I s 2 − i d 2 i_q=\sqrt{I_s^2-i_d^2} iq=Is2id2 (9)

值得一提的是,转速环的输出应当是转矩指令值,而转矩和电流存在一定的线性关系,因此可以直接作为电流指令值。最简单的矢量控制 i 0 ≡ 0 i_0 \equiv0 i00中,转速环的输出直接作为q轴电流的指令值;而在MTPA中,转速环输出的转矩指令值,应当由整个全部的定子电流来提供,即转速环的输出为定子电流幅值指令值,而非q轴电流指令。

仿真验证

为了直观看出使用MTPA的有效性,对一台具有高凸极比IPMSM磁阻转矩成分更大)进行仿真。

仿真参数设置如下:
L d = 3.5 m H , L q = 12 m H , ψ = 0.17 W b , U d c = 311 V L_d= 3.5mH,L_q=12mH,\psi=0.17Wb,U_{dc}=311V Ld=3.5mH,Lq=12mH,ψ=0.17Wb,Udc=311V

转速500rpm,带轻载(1Nm)和带重载(30Nm)工况下运行。0.1s之前施加 i d ≡ 0 i_d\equiv0 id0控制,0.1s后施加MTPA算法,总仿真时间0.2s。

轻载1N·m

dq轴电流和三相电流波形图下
在这里插入图片描述
在这里插入图片描述
可见在施加MTPA控制之后并没有明显的效果。

原因如下:
由于所带负载较小,定子电流的幅值也小。此时的转矩角

γ = a r c c o s ( − ψ + ψ 2 + 8 I s 2 ( L d − L q ) 4 I s ( L d − L q ) ) ≈ a r c c o s ( − ψ + ψ 2 4 I s ( L d − L q ) ) = 90 ° \gamma =arccos( \frac{-\psi +\sqrt{\psi^2+8I_s^2(L_d-L_q)}}{4I_s(L_d-L_q)})\approx arccos(\frac{-\psi+\sqrt{\psi^2}}{4I_s(L_d-L_q)})=90\degree γ=arccos(4Is(LdLq)ψ+ψ2+8Is2(LdLq) )arccos(4Is(LdLq)ψ+ψ2 )=90°
此时的d轴电流指令值 I d ≈ I s c o s γ = 0 I_d\approx I_scos\gamma =0 IdIscosγ=0

所以施加MTPA之后,并没有客观的负的d轴电流来产生磁阻转矩。

重载30N·m

dq轴电流和三相电流波形图如下
在这里插入图片描述
在这里插入图片描述
仿真结果说明,在带重载的情况下,所需的电磁转矩大,施加MTPA控制以后,d轴指令值从0变为-10A,q轴指令值从30降为18A,即利用了电机的凸极效应,合理分配了相电流以产生磁阻转矩

从三相电流波形可以看出,施加MTPA后,定子电流幅值从30A减为20A,即使用更小的定子电流产生同等的电磁转矩,此即MTPA的目的。

总结

MTPA算法的目的在于充分利用电机的凸极效应来合理分配电流,其中一部分用于产生永磁转矩,另一部分用于产生电磁转矩,达到小电流,大转矩的效果。

值得注意以下两点

  1. MTPA的推导基于精确的电机模型,但实际情况下电机模型参数大多是未知,且容易收到温度等因素的干扰。因此在实际应用该算法时需注意模型参数的敏感性,必要时需结合在线参数辨识等技术。
  2. 在实际应用中,为了减小微控制器的运算负担,式(8)(9)并不会在线计算。而是通过提前离线计算并制表,在线查表的方式来得到dq轴电流设定。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/642047.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

06:HAL----定时器

前言&#xff1a; 每来一个TIM 时钟CNT计数器就记一个数&#xff0c;记到某一个程度就会产生溢出。然后ARR就会装载到CNT计数器里面 一:TIM 1:介绍 TIM&#xff08;Timer&#xff09;定时器 定时器可以对输入的时钟进行计数&#xff0c;并在计数值达到设定值时触发中断 16位计…

基于CAPL的HEX文件解析

&#x1f345; 我是蚂蚁小兵&#xff0c;专注于车载诊断领域&#xff0c;尤其擅长于对CANoe工具的使用&#x1f345; 寻找组织 &#xff0c;答疑解惑&#xff0c;摸鱼聊天&#xff0c;博客源码&#xff0c;点击加入&#x1f449;【相亲相爱一家人】&#x1f345; 玩转CANoe&…

武汉大学博士,华为上班5年多,月薪多少。。。

最近&#xff0c;一位来自武汉大学的博士研究生透露了自己在华为公司工作五年后的薪酬情况。 据他透露&#xff0c;他在2018年加入华为时的月薪为2.4万&#xff0c;随着时间的推移&#xff0c;到了2023年&#xff0c;他的月薪已经增长至4.4万&#xff01;此外&#xff0c;他还透…

IntelliJ IDEA2020下使用Maven构建Scala 项目

1.创建maven文件 2.进入pom.xml导入依赖 <!--添加spark的依赖--><dependency><groupId>org.apache.spark</groupId><artifactId>spark-core_2.12</artifactId><version>3.2.1</version></dependency><!--添加scala依…

OpenHarmony开源鸿蒙NEXT星河版内核嵌入式编程

一、前景提要 2024年1月18日&#xff0c;华为放出HarmonyOS NEXT 鸿蒙星河版开发者预览版本&#xff08;不是HarmonyOS NEXT版&#xff0c;是HarmonyOS NEXT星河版&#xff09;&#xff0c;首次提到用鸿蒙内核&#xff08;暂命名&#xff09;取代了Linux内核。 该内核源码还未放…

电厂水泵远程自动化控制系统解决方案介绍

水泵将原动机的机械能或其他外部能量传送给液体&#xff0c;使液体能量增加&#xff0c;可以用于电力供水系统、城市供水系统、石油化工系统、农业水利系统等等行业&#xff0c;水泵远程自动化监测控制系统&#xff0c;可实时监测电厂水泵的运行状态&#xff0c;实现对水电厂排…

电力调度自动化中智能电网技术的应用

电力调度自动化中智能电网技术的应用 在现代电网的现代化发展和电网重组工作中起着关键作用,由于此项技术开发时间短,目前还没有形成一个相对清晰的概念,但此技术在未来的电网发展工作中的地位已得到了一些国家的认可。由于智能电网具有良好的兼容性以及交互性等优势,一经推出就…

XML OR MYsql 报错:Could not create connection to database server.

mybaits文件少复制了一个部分&#xff0c;或缺少部分&#xff1a; 添加至表头即可解决 代码&#xff1a; <?xml version"1.0" encoding"UTF-8"?> <!DOCTYPE configuration SYSTEM "http://mybatis.org/dtd/mybatis-3-config.dtd" &g…

SpringMVC中的文件上传和中英文名称文件下载

一、文件上传 前端&#xff1a; <% page language"java" contentType"text/html;charsetUTF-8"pageEncoding"UTF-8"%> <! DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN""http://www.w3.org/TR/html4…

【Elasticsearch】Elasticsearch 从入门到精通(一):基本介绍

《Elasticsearch 从入门到精通》共包含以下 2 2 2 篇文章&#xff1a; Elasticsearch 从入门到精通&#xff08;一&#xff09;&#xff1a;基本介绍Elasticsearch 从入门到精通&#xff08;二&#xff09;&#xff1a;基础使用 &#x1f60a; 如果您觉得这篇文章有用 ✔️ 的…

24V转2.8V2A降压芯片WT6030

24V转2.8V2A降压芯片WT6030 WT6030是一种高效同步整流降压开关模式转换器&#xff0c;集成内部功率MOSFET。该器件在宽输入电源范围内提供3A峰值输出电流&#xff0c;展现出卓越的负载和线路调节性能。其设计仅需要最小数量的外部现成组件&#xff0c;并且采用了节省空间的ESO…

【LeetCode热题100】【多维动态规划】最小路径和

题目链接&#xff1a;64. 最小路径和 - 力扣&#xff08;LeetCode&#xff09; 给定一个包含非负整数的 m x n 网格 grid &#xff0c;请找出一条从左上角到右下角的路径&#xff0c;使得路径上的数字总和为最小。 说明&#xff1a;每次只能向下或者向右移动一步。 经典动态规…