本地部署Llama3教程,断网也能用啦!

4月18日,Meta在官方博客官宣了Llama3,标志着人工智能领域迈向了一个重要的飞跃。经过笔者的个人体验,Llama3 8B效果已经超越GPT-3.5,最为重要的是,Llama3是开源的,我们可以自己部署!

本文和大家分享一下如何在个人电脑上部署Llama3,拥有你自己的GPT-3.5+!

很多读者担心本地部署时个人电脑的硬件配置不够,实际上这种担心是多余的,笔者使用的是MacBook M2 Pro (2023款), 主要硬件配置如下:

  • 10核CPU
  • 16G内存

部署步骤大致如下:

  • 安装Ollama
  • 下载Llama3
  • 安装Node.js
  • 部署WebUI

安装Ollama

Ollama可以简单理解为客户端,实现和大模型的交互,读者可以前往ollama.com/download,根据…

WX20240420-085342@2x

下载之后打开,直接点击Next以及Install安装ollama到命令行。安装完成后界面上会提示ollama run llama2,不需要执行这条命令,因为我们要安装llama3

image.png

下载Llama3

打开新的终端/命令行窗口,执行以下命令:

bash
复制代码
ollama run llama3

程序会自动下载Llama3的模型文件,默认是8B,也就80亿参数版本,个人电脑完全可以运行。

成功下载模型后会进入交互界面,我们可以直接在终端进行提问,比如笔者问的Who are you?,Llama3几乎是秒回答。

vbnet
➜  Projects ollama run llama3
>>> who are you?
I'm LLaMA, a large language model trained by a team of researcher at Meta 
AI. I'm here to chat with you and answer any questions you may have.I've been trained on a massive dataset of text from the internet and can 
generate human-like responses to a wide range of topics and questions. My 
training data includes but is not limited to:* Web pages
* Books
* Articles
* Research papers
* ConversationsI'm constantly learning and improving my responses based on the 
conversations I have with users like you.So, what's on your mind? Do you have a question or topic you'd like to 
discuss?

安装Node.js

支持Ollama的WebUI非常多,笔者体验过热度第一的那个WebUI(github.com/open-webui/…%EF%BC%8C%E9%9C%80%E8%A6%81Docker%E6%88%96%E8%80%85Kubernetes%E9%83%A8%E7%BD%B2%EF%BC%8C%E6%9C%89%E7%82%B9%E9%BA%BB%E7%83%A6%EF%BC%8C%E8%80%8C%E4%B8%94%E9%95%9C%E5%83%8F%E4%B9%9F%E5%B7%AE%E4%B8%8D%E5%A4%9A1G%E3%80%82)

本文推荐使用ollama-webui-lite(github.com/ollama-webu…%EF%BC%8C%E9%9D%9E%E5%B8%B8%E8%BD%BB%E9%87%8F%E7%BA%A7%EF%BC%8C%E5%8F%AA%E9%9C%80%E8%A6%81%E4%BE%9D%E8%B5%96Node.js%E3%80%82)

小伙伴可以前往(nodejs.org/en/download…

image-20240420090338877

设置国内NPM镜像

官方的NPM源国内访问有点慢,笔者推荐国内用户使用腾讯NPM源(mirrors.cloud.tencent.com/npm/),之前笔者使…

打开终端执行以下命令设置NPM使用腾讯源:

bash
复制代码
npm config set registry http://mirrors.cloud.tencent.com/npm/

部署WebUI

打开终端,执行以下命令部署WebUI:

bash
复制代码
git clone https://github.com/ollama-webui/ollama-webui-lite.git
cd ollama-webui-lite
npm install
npm run dev

提示如下,WebUI已经在本地3000端口进行监听:

css
复制代码
> ollama-webui-lite@0.0.1 dev
> vite dev --host --port 3000VITE v4.5.2  ready in 765 ms➜  Local:   http://localhost:3000/

打开浏览器访问http://localhost:3000,可以看到如下图所示界面。默认情况下是没有选择模型的,需要点击截图所示箭头处选择模型。

image-20240420091143684

笔者给模型提了一个编写一个Golang Echo Server的例子,大概5秒就开始打印结果,速度非常不错。

image-20240420091325732

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

😝有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/644148.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

STM32点灯大师(点了一颗LED灯,轮询法)

配置操作: 一、使用CubeMX配置到大致的操作 1.1 选择芯片 1.2 选择引脚(根据电路图) 1.3 配置gpio口 1.4 配置系统 1.5文件项目操作 最后就是点击 二、点击CubeMX生成的代码,并且修改代码 2.1 看看效果 2.2 写代码

SpringBoot+Vue开发记录(三)

说明:本篇文章的主要内容为需求分析。需求分析这一部分很重要,也稍微有点子难搞,所以本篇文章里的有些内容会有失偏颇。 一、准备步骤 我打算做一个刷题项目,但是具体这个项目该怎么做,我是一头雾水。 所以就要先进行…

开源贡献代码之​探索一下Cython

探索一下Cython 本篇文章将会围绕最近给Apache提的一个feature为背景,展开讲讲Cython遇到的问题,以及尝试自己从0写一个库出来,代码也已经放星球了,感兴趣的同学可以去下载学习。 0.背景 最近在给apache arrow提的一个feature因为…

医院内可以导航吗?院内导航基于什么技术?

医院将就诊区域平面图、科室分布图,进行整合和数字化,最终形成一张与医院实际布局一致的电子地图,呈现在患者的手机上。基于这张电子地图,患者可以快速对自己的位置有一个清晰的认知,通过楼层切换、地图缩放&#xff0…

remote: HTTP Basic: Access deniedfatal: Authentication failed for

$ git push -u origin main remote: HTTP Basic: Access denied fatal: Authentication failed for https://gitcode.com/edenl/GD32E350_hid_keyboard.git/ 使用访问令牌做为密码登录即可。

新媒体运营-----短视频运营-----PR视频剪辑----软件基础

新媒体运营-----短视频运营-----PR视频剪辑-----持续更新(进不去说明我没写完):https://blog.csdn.net/grd_java/article/details/138079659 文章目录 1.1 PR软件重置与初始化设置1.2 新建项目及序列设置1.3 PR工作区的管理方法1.4 导入4K超高清视频并与ME配合工作1…

目标检测算法使用体验是怎么样的?

一、YOLO的初次使用体验 1、基本概念 YOLO,全称为You Only Look Once,是一种实时目标检测算法。 YOLO的核心思想是将目标检测任务当作回归问题来解决,它可以在单次图像遍历中识别出图中的物体的类别和位置,因此得名“You Only …

DRF JWT认证基础

JWT认证 【1】base64使用 (1)使用场景 电子邮件附件:由于电子邮件协议只支持 ASCII 字符集,因此,如果要发送非 ASCII 数据(如图片、音频、视频等),需要先将这些数据进行 base64 编…

Spring5深入浅出篇:JDK代理与CGLIB代理区别

Spring5深入浅出篇:JDK代理与CGLIB代理区别 很多粉丝私信我这个Spring5的课程在哪看,这边是在B站免费观看欢迎大家投币支持一下. https://www.bilibili.com/video/BV1hK411Y7zf JDK动态代理与CGLIB的区别 在Java的世界里,动态代理主要有两种实现方式:JDK…

【Python】基础知识(函数与数据容器)

笔者在C语言基础上学习python自用笔记 type() 返回数据类型 name "root" hei 1.8 wei 77 type_hei type(hei) type_wei type(wei) print(type(name)) print(type_hei) print(type_wei)在python中变量是没有类型的,它存储的数据是有类型的。 数据类…

Linux——界面和用户

本篇文章所写的都是基于centos 7 64位(通过虚拟机运行)。 一、Linux的界面 Linux操作系统提供了多种用户界面,主要分为图形用户界面(GUI)和命令行界面(CLI)。 1、图形用户界面(GUI)&#xff…

【大数据】LSM树,专为海量数据读写而生的数据结构

目录 1.什么是LSM树? 2.LSM树的落地实现 1.什么是LSM树? LSM树(Log-Structured Merge Tree)是一种专门针对大量写操作做了优化的数据存储结构,尤其适用于现代大规模数据处理系统,如NoSQL数据库&#xff…