【算法基础实验】图论-基于DFS的连通性检测

基于DFS的连通性检测

理论基础

在图论中,连通分量是无向图的一个重要概念,特别是在处理图的结构和解析图的组成时。连通分组件表示图中的一个子图,在这个子图中任意两个顶点都是连通的,即存在一条路径可以从一个顶点到达另一个顶点,并且这个子图是最大的,即不能通过添加更多的顶点来增加连通性。对于有向图,这通常被称为强连通分量。

基于DFS的连通分量算法

书中4.1.6节提到的基于深度优先搜索(DFS)的连通分量算法用于识别和处理无向图中的连通分量。这个算法的基本思想是使用DFS遍历图中的每个顶点,同时记录哪些顶点是连通的。

算法步骤

  1. 初始化:为每个顶点准备一个标记数组 marked[] 来记录每个顶点是否被访问过,另外用一个数组 id[] 来记录每个顶点所属的连通分量的标识符。还需要一个计数器 count 来统计连通分量的数量。
  2. DFS遍历:从任意未被访问的顶点开始,执行DFS遍历。在遍历过程中,标记所有可达的顶点为已访问,同时将这些顶点的 id[] 设置为当前的连通分量标识符。
  3. 连通分量标识:每次在DFS遍历开始前增加连通分量计数器 count,并将遍历过程中访问的所有顶点的连通分量标识设置为这个计数器的值。
  4. 重复执行:重复上述过程,直到图中的所有顶点都被访问过。

应用

  • 图的结构分析:识别图中的独立部分或者紧密相关的群组。
  • 网络设计:确定网络中的独立组件,以优化设计和提高稳定性。
  • 社交网络:识别社交网络中的社区或者群组。

通过这种基于DFS的连通分量算法,可以有效地解析和处理图的结构,对于复杂网络的分析尤其有用。

数据结构

private boolean[] marked
private int[] id
private int count
myBag
myGraph

实验数据和算法流程

这里使用tinyG.txt来构成实验用的无向图

注意算法流程中count,marked[],id[]的变化

请添加图片描述

代码实现

import edu.princeton.cs.algs4.In;
import edu.princeton.cs.algs4.StdOut;public class myCC {private boolean[] marked;private int[] id;private int count;public myCC(myGraph G){marked = new boolean[G.V()];id = new int[G.V()];for(int s=0;s<G.V();s++){if(!marked[s]){dfs(G,s);//这里是精髓所在,每次dfs回到这里就说明互相连通的一组顶点已经完成遍历,//也就确定了一个连通分量count++;                }}}private void dfs(myGraph G, int v){marked[v] = true;id[v] = count;for(int w:G.adj(v)){if(!marked[w]){dfs(G,w);}}}public boolean connected(int v, int w){return id[v]==id[w];}public int id(int v){return id[v];}public int count(){return count;}public static void main(String[] args){myGraph G = new myGraph(new In(args[0]));myCC cc = new myCC(G);int M = cc.count();StdOut.println(M + " components");myBag<Integer>[] components = (myBag<Integer>[]) new myBag[M];for(int i=0;i<M;i++){components[i] = new myBag<Integer>();}for(int v=0;v<G.V();v++){components[cc.id(v)].add(v);}for(int i=0;i<M;i++){for(int v:components[i]) StdOut.print(v+" ");StdOut.println();}}
}

代码详解

这段代码实现了一个基于深度优先搜索(DFS)的连通分量(CC)类 myCC,用于确定无向图中所有的连通分量。下面是详细的代码解释:

类定义和变量


public class myCC {private boolean[] marked;  // 标记数组,用于标记每个顶点是否已经被访问过private int[] id;          // 每个顶点所属的连通分量标识private int count;         // 连通分量的数量
  • marked 数组用于记录图中的每个顶点是否已经被访问。
  • id 数组用于存储每个顶点所属的连通分量的ID。
  • count 用于计数图中连通分量的总数。

构造函数


public myCC(myGraph G){marked = new boolean[G.V()];id = new int[G.V()];for(int s = 0; s < G.V(); s++) {if (!marked[s]) {dfs(G, s);count++;  // 完成一个连通分量的搜索后,增加连通分量的计数}}
}

构造函数遍历图中的所有顶点,对于每个未标记的顶点,执行DFS来标记和记录所有能从该顶点访问到的顶点,这些顶点构成一个连通分量。每次DFS调用结束后,连通分量数 count 加一。

DFS 方法


private void dfs(myGraph G, int v){marked[v] = true;id[v] = count;for (int w : G.adj(v)) {if (!marked[w]) {dfs(G, w);}}
}

dfs 方法标记顶点 v 为已访问,并将其连通分量ID设置为当前的 count。然后递归地访问所有与顶点 v 直接相连的未标记顶点。

连通分量的辅助方法


public boolean connected(int v, int w) { return id[v] == id[w]; }
public int id(int v) { return id[v]; }
public int count() { return count; }

这些方法提供了:

  • connected(v, w) 检查两个顶点是否属于同一个连通分量。
  • id(v) 返回顶点 v 的连通分量ID。
  • count() 返回图中连通分量的总数。

主方法


public static void main(String[] args){myGraph G = new myGraph(new In(args[0]));myCC cc = new myCC(G);int M = cc.count();StdOut.println(M + " components");myBag<Integer>[] components = (myBag<Integer>[]) new myBag[M];for (int i = 0; i < M; i++) {components[i] = new myBag<Integer>();}for (int v = 0; v < G.V(); v++) {components[cc.id(v)].add(v);}for (int i = 0; i < M; i++) {for (int v : components[i]) StdOut.print(v + " ");StdOut.println();}
}

主方法使用 myCC 类来处理一个从文件读取的图,并输出所有的连通分量。这里,连通分量被存储在一个 myBag 数组中,每个 myBag 对象存储一个连通分量的所有顶点,然后输出每个连通分量的顶点。

这段代码是一个完整的图连通分量识别实现,使用DFS作为基本的遍历策略。

实验

代码编译

javac myCC.java

运行代码

将实验数据tinyG.txt导入代码后,myCC可以检测到3个连通分量,并逐行将连通分量中的元素打印出来

java myCC ..\data\tinyG.txt               
3 components
6 5 4 3 2 1 0
8 7
12 11 10 9

参考资料

算法(第4版)人民邮电出版社

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/652572.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

公园景区伴随音乐系统-公园景区数字IP广播伴随音乐系统建设指南

公园景区伴随音乐系统-公园景区数字IP广播伴随音乐系统建设指南 由北京海特伟业任洪卓发布于2024年4月23日 随着“互联网”被提升为国家战略&#xff0c;传统行业与互联网的深度融合正在如火如荼地展开。在这一大背景下&#xff0c;海特伟业紧跟时代步伐&#xff0c;凭借其深厚…

vue实现录音并转文字功能,包括PC端web,手机端web

vue实现录音并转文字功能&#xff0c;包括PC端&#xff0c;手机端和企业微信自建应用端 不止vue&#xff0c;不限技术栈&#xff0c;vue2、vue3、react、.net以及原生js均可实现。 原理 浏览器实现录音并转文字最快捷的方法是通过Web Speech API来实现&#xff0c;这是浏览器…

Swift-31-泛型和类型操作

泛型 Swift泛型(generics) 让我们写出的类型和函数可以使用对于我们或编译器都未知的类型。 很多内建类型(包括可空类型、数组和字典)都是用泛型实现的&#xff0c;比如数组和一些集合就是用泛型方式来实现的。 一种运行时进行类型检查的技术&#xff0c;效率高但是不安全。在…

JAVA前端快速入门基础_javascript入门(01)

写在前面:本文用于快速学会简易的JS&#xff0c;仅做扫盲和参考作用 1.JS是什么 JavaScript是一门跨平台&#xff0c;面向对象的脚本语言(即不需要编译&#xff0c;可以直接通过浏览器进行解释)。JS和Java是两门完全不相同的语言&#xff0c;但是基础的语法是类似的 2.JS的引…

RK3568 学习笔记 : busybox 制作 ext4最小根文件系统

前言 开发板型号&#xff1a; 【正点原子】 的 RK3568 开发板 AtomPi-CA1 使用 VMware 虚拟机 ubuntu 20.04 编译 busybox&#xff0c;并制作 emmc 中的 ext4 根文件系统 rootfs 下载 busybox 可以在 https://busybox.net/downloads/snapshots/ 下载最新的 busybox&#xff…

Linux实验一:Linux环境及编程工具

目录 一、实验目的二、实验内容三、参考代码四、实验步骤步骤1. 编辑源代码test1.c步骤2. 编译源代码test1.c步骤3. 调试test1步骤4. 重新编译运行test1.c 五、实验结果六、实验总结 一、实验目的 1、掌握Linux C开发过程中的基本概念&#xff1b; 2、掌握如vim&#xff0c;GC…

leetcode和相关题目

1. 两数之和 直接利用hashmap存储值和对于索引&#xff0c;利用target-nums[i]去哈希表里找对应数值。返回下标。 class Solution { public:vector<int> twoSum(vector<int>& nums, int target) {unordered_map<int, int> mp;vector<int> res;fo…

CentOS安装SonarQube

系列文章目录 文章目录 系列文章目录前言前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站,这篇文章男女通用,看懂了就去分享给你的码吧。 sonar是一款静态代码质量分析工具,支持Java、Python、PHP、JavaScript、…

一分钟理解:比特币第一次严重漏洞,生产1844亿枚比特币!是如何发生的

1、事件 2010年8月15日&#xff08;也就是比特币诞生的第二年&#xff0c;创世区块于2009年1月3日诞生&#xff09;&#xff0c;有人发现&#xff0c;在比特币区块链的第74638块上&#xff0c;一笔让人惊愕的交易。 这笔交易出现了184 467 440 737.09551616个比特币&#xff…

C# WinForm —— 08 Form初始化、布局、注册事件

Form 初始化 Form初始化的时候会调用 Designer.cs 里的 InitializeComponent(); 函数&#xff0c;在InitializeComponent(); 函数里面有Load Form语句时会调用 FrmLogin_Load()函数 Form布局 两种方式&#xff1a; 拖控件到窗体&#xff0c;设置属性在Load事件中写代码添加…

算法 || 二分查找

目录 二分查找 在排序数组中查找元素的第一个和最后一个位置 搜索插入位置 一个数组经过划分后具有二段性的都可以用二分查找 二分查找 704. 二分查找 - 力扣&#xff08;LeetCode&#xff09; ​ 暴力解法&#xff1a;直接遍历数组&#xff0c;找到 target 便返回下标&am…

基于微信小程序云开发实现考研题库小程序V2.0

不久之前&#xff0c;基于云开发的微信答题小程序搭建题库小程序V1.0&#xff0c;软件架构是微信原生小程序云开发。现在来回顾一下&#xff0c;已经实现的功能。 一、V1.0项目预览 1、页面结构 首页 答题页 结果页 我的页 排行榜页 答题历史页 登录页 使用指引页 2…