变形金刚在图像识别方面比CNN更好吗?

链接到文 — https://arxiv.org/pdf/2010.11929.pdf

一、说明

        如今,在自然语言处理(NLP)任务中,转换器已成为goto架构(例如BERT,GPT-3等)。另一方面,变压器在计算机视觉任务中的使用仍然非常有限。大多数研究人员直接使用卷积层,或者将某些注意力块与卷积块一起添加到计算机视觉应用(如Xception,ResNet,EfficientNet,DenseNet,Inception等)中。关于视觉转换器(ViT)的论文在图像序列上实现了纯变压器模型,而无需卷积块来对图像进行分类。本文展示了ViT如何在各种图像识别数据集上获得比大多数最先进的CNN网络更好的结果,同时使用更少的计算资源。

二、视觉变压器 (ViT)

        转换器是对数据序列进行操作的网络,例如一组单词。这些单词集首先被标记化,然后输入到转换器中。转换器添加 Attention(二次运算 — 计算每对标记化单词之间的成对内积。随着字数的增加,操作数也会增加)。

        因此,图像更难在变形金刚上训练。图像由像素组成,每个图像可以包含数千到数百万个像素。因此,在转换器中,每个像素将与图像中的每个其他像素进行成对操作。在大小为 500*500 像素的图像中,即 500^2,因此注意力机制将花费 (500^2)^2 次操作。这是一项艰巨的任务,即使有多个 GPU。因此,对于图像,研究人员大多使用某种形式的局部注意力(像素聚类),而不是使用全局注意力。

        ViT的作者通过使用全局注意力来解决这个问题,但不是在整个图像上,而是在多个图像补丁上。因此,首先将大图像分成多个小块(例如 16*16 像素)。如图 1 所示。

图1.图像分为多个补丁(来源:原始论文中的图像)

        然后将这些映像修补程序展开为一系列映像,如图 2 所示。这些图像序列具有位置嵌入。

图2.图像补丁展开成一系列图像(来源:原始论文中的图像)

最初,变压器不知道哪个补丁应该去哪里。因此,位置嵌入有助于变压器了解每个补丁应该适合的位置。在论文中,作者使用了简单的编号1,2,3...n,以指定补丁的位置,如图 3 所示。这些不仅仅是数字,而是可学习的向量。也就是说,数字 1 不直接使用,而是存在一个查找表,其中包含表示补丁位置的每个数字的向量。因此,对于第一个补丁,从表中抓取第一个矢量并与补丁一起放入变压器中。同样,对于第二个补丁,从表中抓取第二个矢量并与第二个补丁一起放入变压器中,依此类推。如图 2 所示。

图3.带有位置嵌入的补丁(来源:图片来自原始论文)

图4.位置嵌入作为向量表示(来源:作者创建的图像)

映像修补程序是小映像(16*16 像素)。这在某种程度上需要以一种变压器理解它的方式馈送。一种方法是将图像展开为 16*16 = 256 维向量。然而,该论文的作者使用了线性投影。这意味着有一个矩阵,表示为“E”(嵌入)。获取单个补丁并首先解卷成线性向量。然后将该向量与嵌入矩阵 E 相乘。然后将最终结果与位置嵌入一起馈送到变压器。

然后将所有补丁(线性投影)及其单独的位置嵌入送入变压器编码器。该变压器是标准的变压器架构(您只需要注意 - 纸)。

还有一个额外的可学习嵌入,标记为位置零,如图 5 所示。此嵌入的输出用于最终对整个图像进行分类。

图5.整个ViT架构,带有额外的可学习嵌入 - 用红色标记,最左边的嵌入(来源:原始论文的图片)

三、结果

        表1显示了ViT与各种数据集上最先进的CNN架构的结果比较。ViT是在JFT-300数据集上进行预训练的。下面的结果表明,在所有数据集上,ViT的表现都优于基于ResNet的架构和EfficentNet-L2架构(在嘈杂的学生权重上预训练)。这两种模型都是当前最先进的CNN架构。在表1中,ViT-H指的是ViT-Huge(32层),ViT-L指的是ViT-Large(24层)。ViT-H/L 后面的数字 14 和 16 表示从每个图像创建的补丁大小(14*14 或 16*16)。

该表还显示,与其他 2 个 CNN 模型相比,ViT 需要的计算资源要少得多。

表 1.ViT结果与各种图像数据集上其他CNN架构的比较(来源:原始论文中的表格)

图6显示了变压器在对各种图像进行分类时给予的注意。

图6:从输出标记到输入空间的注意力机制(来源:原始论文图片)

四、结论

4.1 视觉变压器是否会在计算机视觉任务中取代CNN?

        到目前为止,CNN已经在计算机视觉任务中占据主导地位。图像基于这样的想法,即一个像素依赖于其相邻像素,下一个像素依赖于其相邻像素(颜色、亮度、对比度等)。CNN对这个想法的研究,并在图像的补丁上使用过滤器来提取重要的特征和边缘。这有助于模型仅从图像中学习必要的重要特征,而不是图像每个像素的细节。

        但是,如果将整个图像数据馈送到模型中,而不仅仅是过滤器可以提取的部分(或它认为重要的部分),则模型表现更好的机会更高。这正是视觉转换器内部正在发生的事情。这可能是在这种情况下,视觉变压器比大多数CNN型号工作得更好的原因之一。

4.2 但这是否意味着变压器将来将在计算机视觉任务中取代CNN?

        好吧,答案是,不会那么快。就在几天前,EfficientNet V2型号发布,其性能甚至比Vision Transformers更好。这只是意味着,现在我们可以期待来自两种类型(CNN和变形金刚)的新架构将在不久的将来推出更新,更好,更高效的模型。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/65729.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux安装JDK

1、到Oracle官网下载JDK https://www.oracle.com/java/technologies/downloads/#java8 Oracle账号可以网上搜或者自己注册一个,JDK安装包根据Linux版本自行选择,我的Linux系统是64位的,所以我这里选择的是x64的JDK安装包 2、下载完后把JDK上…

4.0 Spring Boot入门

1. Spring Boot概述 Spring Boot介绍 Spring Boot是Pivotal团队在2014年推出的全新框架,主要用于简化Spring项目的开发过程,可以使用最少的配置快速创建Spring项目。 Spring Boot版本 2014年4月v1.0.0.RELEASE发布。 ​ 2.Spring Boot特性 约定优于配…

第一百二十五天学习记录:C++提高:STL-deque容器(下)(黑马教学视频)

deque插入和删除 功能描述: 向deque容器中插入和删除数据 函数原型: 两端插入操作: push_back(elem); //在容器尾部添加一个数据 push_front(elem); //在容器头部插入一个数据 pop_back(); //删除容器最后一个数据 pop_front(); //删除容器…

Patch SCN一键解决ORA-600 2662故障---惜分飞

客户强制重启库之后,数据库启动报ORA-600 2037,ORA-745 kcbs_reset_pool/kcbzre1等错误 Wed Aug 09 13:25:38 2023 alter database mount exclusive Successful mount of redo thread 1, with mount id 1672229586 Database mounted in Exclusive Mode Lost write protection d…

0基础学C#笔记10:归并排序法

文章目录 前言一、递归的方式二、代码总结 前言 将一个大的无序数组有序,我们可以把大的数组分成两个,然后对这两个数组分别进行排序,之后在把这两个数组合并成一个有序的数组。由于两个小的数组都是有序的,所以在合并的时候是很…

百日筑基篇——python爬虫学习(一)

百日筑基篇——python爬虫学习(一) 文章目录 前言一、python爬虫介绍二、URL管理器三、所需基础模块的介绍1. requests2. BeautifulSoup1. HTML介绍2. 网页解析器 四、实操1. 代码展示2. 代码解释1. 将大文件划分为小的文件2. 获得结果页面的url3. 获取结…

【LeetCode】买卖股票的最佳时机含冷冻期

买卖股票的最佳时机含冷冻期 题目描述算法分析程序设计 链接: 买卖股票的最佳时机含冷冻期 题目描述 算法分析 程序设计 class Solution { public:int maxProfit(vector<int>& prices) {int n prices.size();//天数vector<vector<int>> dp(n,vector&l…

用ChatGPT和六顶帽思考法帮助自己更好地决策和解决问题

当我们在解决复杂问题时&#xff0c;我们常常陷入单一视角的状态。创造性思维领域的先驱爱德华德博诺&#xff0c;提出了六顶帽思考法[1]&#xff0c;这意味着我们可以从六个不同的视角来思考一个问题&#xff0c;以实现高水平决策和解决问题。 每一顶“帽子”代表不同的视角。…

Pycharm 双击启动失败?

事故 双击 Pycharm 后&#xff0c;出现加载工程&#xff0c;我不想加载这个工程&#xff0c;就点击了弹出的 cancle 取消按钮。然后再到桌面双击 Pycharm 却发现无法启动了。哪怕以管理员权限运行也没用&#xff0c;就是不出界面。 原因未知 CtrlshiftESC 打开后台&#xff…

Js小数运算精度缺失的解决方法

项目场景&#xff1a; 提示&#xff1a;项目需求截图&#xff1a; 问题描述 众所周知Js做运算时0.10.2不等于0.3,目前项目需要计算关于金额的选项&#xff0c;涉及到金额保留后两位。保单欠款是根据用户输入的保单应收和保单欠款自动计算的。 原因分析&#xff1a; 产生浮点数…

置信域策略优化Trust Region Policy Optimization (TRPO)

1. 置信域方法(Trust Region Methods) [1]将置信域方法用到强化学习中&#xff0c;并取到了非常好的结果. 1.1 优化问题 1.2 置信域 1.3 置信域方法的过程 References [1] Schulman J, Levine S, Abbeel P, et al. Trust region policy optimization[C]//International conf…

手势识别rtos小车(2)----蓝牙通信

在pycharm下面安装pybluez库 本人&#xff1a;win11python3.8pybluez2 第一步&#xff0c;直接在pycharm终端运行 pip install pybluez 一般都会直接报错 第二步&#xff0c;下载安装win11的SDK文件&#xff0c;Windows SDK - Windows 应用开发 | Microsoft Developer 第三步…