时序预测 | MATLAB实现CNN-BiGRU-Attention时间序列预测

时序预测 | MATLAB实现CNN-BiGRU-Attention时间序列预测

目录

    • 时序预测 | MATLAB实现CNN-BiGRU-Attention时间序列预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

基本介绍

MATLAB实现CNN-BiGRU-Attention时间序列预测,CNN-BiGRU-Attention结合注意力机制时间序列预测。

模型描述

Matlab实现CNN-BiGRU-Attention时间序列预测
1.data为数据集,格式为excel,单变量时间序列预测;
2.CNN_BiGRU_AttentionTS.m为主程序文件,运行即可;
3.命令窗口输出R2、MAE、MAPE、MSE和MBE;
注意程序和数据放在一个文件夹,运行环境为Matlab2021b及以上。

注意程序和数据放在一个文件夹,运行环境为Matlab2021b及以上。
4.注意力机制模块:
SEBlock(Squeeze-and-Excitation Block)是一种聚焦于通道维度而提出一种新的结构单元,为模型添加了通道注意力机制,该机制通过添加各个特征通道的重要程度的权重,针对不同的任务增强或者抑制对应的通道,以此来提取有用的特征。该模块的内部操作流程如图,总体分为三步:首先是Squeeze 压缩操作,对空间维度的特征进行压缩,保持特征通道数量不变。融合全局信息即全局池化,并将每个二维特征通道转换为实数。实数计算公式如公式所示。该实数由k个通道得到的特征之和除以空间维度的值而得,空间维数为H*W。其次是Excitation激励操作,它由两层全连接层和Sigmoid函数组成。如公式所示,s为激励操作的输出,σ为激活函数sigmoid,W2和W1分别是两个完全连接层的相应参数,δ是激活函数ReLU,对特征先降维再升维。最后是Reweight操作,对之前的输入特征进行逐通道加权,完成原始特征在各通道上的重新分配。

1
2

程序设计

  • 完整程序和数据获取方式1:同等价值程序兑换;
  • 完整程序和数据获取方式2:私信博主回复MATLAB实现CNN-BiGRU-Attention时间序列预测获取。
 gruLayer(32,'OutputMode',"last",'Name','bil4','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')dropoutLayer(0.25,'Name','drop2')% 全连接层fullyConnectedLayer(numResponses,'Name','fc')regressionLayer('Name','output')    ];layers = layerGraph(layers);layers = connectLayers(layers,'fold/miniBatchSize','unfold/miniBatchSize');
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 训练选项
if gpuDeviceCount>0mydevice = 'gpu';
elsemydevice = 'cpu';
endoptions = trainingOptions('adam', ...'MaxEpochs',MaxEpochs, ...'MiniBatchSize',MiniBatchSize, ...'GradientThreshold',1, ...'InitialLearnRate',learningrate, ...'LearnRateSchedule','piecewise', ...'LearnRateDropPeriod',56, ...'LearnRateDropFactor',0.25, ...'L2Regularization',1e-3,...'GradientDecayFactor',0.95,...'Verbose',false, ...'Shuffle',"every-epoch",...'ExecutionEnvironment',mydevice,...'Plots','training-progress');
%% 模型训练
rng(0);
net = trainNetwork(XrTrain,YrTrain,layers,options);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 测试数据预测
% 测试集预测
YPred = predict(net,XrTest,"ExecutionEnvironment",mydevice,"MiniBatchSize",numFeatures);
YPred = YPred';
% 数据反归一化
YPred = sig.*YPred + mu;
YTest = sig.*YTest + mu;
————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/65888.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Streamlit项目: 轻松搭建部署个人博客网站

文章目录 1 前言1.1 探索 Streamlit:轻松创建交互式应用1.2 最全 Streamlit 教程专栏 2 我的个人博客网站已上线!2.1 一个集成了智能中医舌诊-中e诊专栏的博客网站2.2 前期准备2.3 使用 Streamlit Cloud 运行 3 知识点讲解3.1 实现多页面:两种…

KMP算法比较次数

主串T “abaabaabcabaabc”,模式串S“abaabc”,采用KMP算法匹配,到匹配成功为止,比较次数是: 序号: 1 2 3 4 5 6 模式串:a b a a b c next[j]: 0 1 1 2 2 3 关于next数组求法&#…

Tomcat的多实例和动静分离

目录 一、多实例 二、 nginxtomcat的负载均衡和动静分离 三、Tomcat 客户端->四层代理->七层代理->tomcat服务器 实验: 问题总结: tomcat日志文件:/usr/local/tomcat/logs/catalina.out 一、多实例 在一台服务器上有多个tomc…

如何在电力行业运用IPD?

电力行业是国民经济众多垄断行业中较早实施改革的行业之一。近几年我国电力行业保持着较快的发展速度,也取得了很大的成绩,发电机容量和发电量居世界首位。2015-2020年,全国发电量不断攀升。 电力是以电能作为动力的能源。电力的发现和应用掀…

【BASH】回顾与知识点梳理(十四)

【BASH】回顾与知识点梳理 十四 十四. 文件与目录的默认权限与隐藏权限14.1 文件预设权限:umaskumask 的利用与重要性:专题制作 14.2 文件隐藏属性chattr (配置文件案隐藏属性)lsattr (显示文件隐藏属性) 14.3 文件特殊权限: SUID, SGID, SBI…

打造企业或者个人IP引流法

打造企业或者个人IP引流法. 大家好,我是百收网SEO编辑:狂潮老师,今天给大家分享企业IP打造的方法 首先我们想让人知道你的企业叫什么,怎么找到你的企业 这个时候我们就需要去各大平台发布信息,客户想了解直接去搜索…

Torch基本操作扫盲

torch.rand是均匀分布采样 torch.randn是标准正态分布采样 同时设定好了GPU种子 高斯/正态分布

Android多屏幕支持-Android12

Android多屏幕支持-Android12 1、概览及相关文章2、屏幕窗口配置2.1 配置xml文件2.2 DisplayInfo#uniqueId 屏幕标识2.3 adb查看信息 3、配置文件解析3.1 xml字段读取3.2 简要时序图 4、每屏幕焦点 android12-release 1、概览及相关文章 AOSP > 文档 > 心主题 > 多屏…

Rabbitmq消息不丢失

目录 一、消息不丢失1.消息确认2.消息确认业务封装2.1 发送确认消息测试2.2 消息发送失败,设置重发机制 一、消息不丢失 消息的不丢失,在MQ角度考虑,一般有三种途径: 1,生产者不丢数据 2,MQ服务器不丢数据…

开源数据库Mysql_DBA运维实战 (DDL语句)

DDL DDL语句 数据库定义语言:数据库、表、视图、索引、存储过程. 例如:CREATE DROP ALTER DDL库 定义库{ 创建业务数据库:CREAATE DATABASE ___数据库名___ ; 数据库名要求{ a.区分大小写 b.唯一性 c.不能使用关键字如 create select d.不能单独使用…

最强自动化测试框架Playwright(22)-模拟器

可以使用测试生成器通过仿真生成测试,以便为特定窗口、设备、配色方案生成测试,以及模拟地理位置、语言或时区。测试生成器还可以生成测试,同时保留经过身份验证的状态。 模拟视口大小 Playwright 打开一个浏览器窗口,其视口设置…

【MAC】 M2 brew安装 docker 运行失败 解决

MAC 安装 brew install --cask docker 之后一直显示docker: Cannot connect to the Docker daemon at unix:///var/run/docker.sock. Is the docker daemon running?. 网上看了一些文章 发现 这个不适用于M2 所以要从官网上下载 docker 安装成功