大数据分析与内存计算学习笔记

一、Scala编程初级实践

1.计算级数:

请用脚本的方式编程计算并输出下列级数的前n项之和Sn,直到Sn刚好大于或等于q为止,其中q为大于0的整数,其值通过键盘输入。(不使用脚本执行方式可写Java代码转换成Scala代码执行)

fef3bb1accdc4bf9a0422f2d6f77126c.png

例如,若q的值为50.0,则输出应为:Sn=50.416695。

测试样例:

q=1时,Sn=2;

q=30时,Sn=30.891459;

q=50时,Sn=50.416695;

相关代码:

import scala.io.StdIn.readInt
object MedicalOne {def main(args: Array[String]): Unit = {var Sn: Float = 0var n: Float = 1println("please input q:")val q = readInt()while (Sn < q) {Sn += (n + 1) / nn += 1}if (Sn == Sn.toInt) {println(s"Sn=${Sn.toInt}")} else {println(s"Sn=$Sn")}}
}

运行结果:

9d362d4934bb4ce9b9f4b4c704709c96.png

de5d8d3463f740c896cc633e723cc269.png

46497a05f263404e9f73dc7fe0743fb2.png

2 模拟图形绘制:

对于一个图形绘制程序,用下面的层次对各种实体进行抽象。定义一个Drawable的特质,其包括一个draw方法,默认实现为输出对象的字符串表示。定义一个Point类表示点,其混入了Drawable特质,并包含一个shift方法,用于移动点。所有图形实体的抽象类为Shape,其构造函数包括一个Point类型,表示图形的具体位置(具体意义对不同的具体图形不一样)。Shape类有一个具体方法moveTo和一个抽象方法zoom,其中moveTo将图形从当前位置移动到新的位置, 各种具体图形的moveTo可能会有不一样的地方。zoom方法实现对图形的放缩,接受一个浮点型的放缩倍数参数,不同具体图形放缩实现不一样。继承Shape类的具体图形类型包括直线类Line和圆类Circle。Line类的第一个参数表示其位置,第二个参数表示另一个端点,Line放缩的时候,其中点位置不变,长度按倍数放缩(注意,缩放时,其两个端点信息也改变了),另外,Line的move行为影响了另一个端点,需要对move方法进行重载。Circle类第一个参数表示其圆心,也是其位置,另一个参数表示其半径,Circle缩放的时候,位置参数不变,半径按倍数缩放。另外直线类Line和圆类Circle都混入了Drawable特质,要求对draw进行重载实现,其中类Line的draw输出的信息样式为“Line:第一个端点的坐标--第二个端点的坐标)”,类Circle的draw输出的信息样式为“Circle center:圆心坐标,R=半径”。如下的代码已经给出了Drawable和Point的定义,同时也给出了程序入口main函数的实现,请完成Shape类、Line类和Circle类的定义。

相关代码

代码目录:

a0b93f4a1b4b42ef9936d4412a56e508.png

主类GraphicPlotting:

object GraphicPlotting {def main(args: Array[String]): Unit = {val p = Point(10, 30)p.draw()val line1 = new Line(Point(0, 0), Point(20, 20))line1.draw()line1.moveTo(Point(5, 5)) //移动到一个新的点line1.draw()line1.zoom(2) //放大两倍line1.draw()val cir = new Circle(Point(10, 10), 5)cir.draw()cir.moveTo(Point(30, 20))cir.draw()cir.zoom(0.5)cir.draw()}
}

Drawable类

trait Drawable {def draw() {println(this.toString)}
}

Point类

case class Point(var x: Double, var y: Double) extends Drawable {def shift(deltaX: Double, deltaY: Double) {x += deltaX;y += deltaY}
}

Shape类

abstract class Shape(var location: Point) {def moveTo(newLocation: Point) {location = newLocation}def zoom(scale: Double)
}

Line类

class Line(beginPoint: Point, var endPoint: Point) extends Shape(beginPoint) with Drawable {override def draw() {println(s"Line:(${location.x},${location.y})--(${endPoint.x},${endPoint.y})")} //按指定格式重载clickoverride def moveTo(newLocation: Point) {endPoint.shift(newLocation.x - location.x, newLocation.y - location.y) //直线移动时,先移动另外一个端点location = newLocation //移动位置}override def zoom(scale: Double) {val midPoint = Point((endPoint.x + location.x) / 2, (endPoint.y + location.y) / 2) //求出中点,并按中点进行缩放location.x = midPoint.x + scale * (location.x - midPoint.x)location.y = midPoint.y + scale * (location.y - midPoint.y)endPoint.x = midPoint.x + scale * (endPoint.x - midPoint.x)endPoint.y = midPoint.y + scale * (endPoint.y - midPoint.y)}
}

Circle类

class Circle(center: Point, var radius: Double) extends Shape(center) with Drawable {override def draw() { //按指定格式重载clickprintln(s"Circle center:(${location.x},${location.y}),R=$radius")}override def zoom(scale: Double) {radius = radius * scale //对圆的缩放只用修改半径}
}

编译运行程序,期望的输出结果如下:

07eb9206bea04e9a854c14c45898873b.png

3 统计学生成绩:

学生的成绩清单格式如下所示,第一行为表头,各字段意思分别为学号、性别、课程名1、课程名2等,后面每一行代表一个学生的信息,各字段之间用空白符隔开

Id     gender Math    English   Physics   

301610    male   80      64        78

301611  female   65      87        58

...

给定任何一个如上格式的清单(不同清单里课程数量可能不一样),要求尽可能采用函数式编程,统计出各门课程的平均成绩,最低成绩,和最高成绩;另外还需按男女同学分开,分别统计各门课程的平均成绩,最低成绩,和最高成绩。

测试样例1如下:

Id     gender Math    English   Physics   

301610    male   80      64        78

301611  female   65      87        58

301612  female   44      71        77

301613  female   66      71        91

301614  female   70      71       100

301615    male   72      77        72

301616  female   73      81        75

301617  female   69      77        75

301618    male   73      61        65

301619    male   74      69        68

301620    male   76      62        76

301621    male   73      69        91

301622    male   55      69        61

301623    male   50      58        75

301624  female   63      83        93

301625    male   72      54       100

301626    male   76      66        73

301627    male   82      87        79

301628  female   62      80        54

301629    male   89      77        72

测试样例2如下:

Id     gender Math    English   Physics  Science

301610    male   72     39         74     93

301611    male   75     85         93     26

301612  female   85    79         91     57

301613  female   63    89         61     62

301614    male   72     63         58     64

301615    male   99     82         70     31

301616  female  100    81         63     72

301617    male   74    100         81     59

301618  female   68    72         63    100

301619    male   63     39         59     87

301620  female   84    88         48     48

301621    male   71     88         92     46

301622    male   82     49         66     78

301623    male   63     80         83     88

301624  female   86    80         56     69

301625    male   76     69         86     49

301626    male   91     59         93     51

301627  female   92    76         79    100

301628    male   79     89         78     57

301629    male   85     74         78     80

样例1的统计代码和结果输出

相关代码

import scala.io.Sourceobject Studentgrades_1 {def main(args: Array[String]): Unit = {val fileName = "D:\\IDEAProjects\\SecondScala\\src\\main\\scala\\grades1.txt"val lines = Source.fromFile(fileName).getLines().toListval header = lines.head.trim.split("\\s+").map(_.trim)val data = lines.tail.map(_.trim.split("\\s+"))val courseNames = header.drop(2)val statsTotal = calculateStatistics(data, courseNames)val statsMales = calculateStatistics(data.filter(_ (1) == "male"), courseNames)val statsFemales = calculateStatistics(data.filter(_ (1) == "female"), courseNames)printStatistics(statsTotal, "")printStatistics(statsMales, " (males)")printStatistics(statsFemales, " (females)")}def calculateStatistics(data: List[Array[String]], courses: Array[String]): List[(String, Double, Double, Double)] = {val courseScores = courses.indices.map { i =>val scores = data.filter(_(i + 2).matches("-?\\d+(\\.\\d+)?")).map(_(i + 2).toDouble) // Ensure we only have numbersif (scores.isEmpty) {(courses(i), 0.0, 0.0, 0.0) // Avoid division by zero if there are no scores for a course} else {val average = scores.sum / scores.lengthval min = scores.minval max = scores.max(courses(i), average, min, max)}}courseScores.toList}def printStatistics(stats: List[(String, Double, Double, Double)], title: String): Unit = {println(s"course    average   min   max${title}")stats.foreach { case (course, average, min, max) =>println(f"$course: $average%.2f $min%.2f $max%.2f")}println()}
}

结果输出

6310510c92c644f896d5ac7804a73aa0.png

样例1的统计代码和结果输出

相关代码

import scala.io.Sourceobject Studentgrades_2 {def main(args: Array[String]): Unit = {val fileName = "D:\\IDEAProjects\\SecondScala\\src\\main\\scala\\grades2.txt"val lines = Source.fromFile(fileName).getLines().toListval header = lines.head.trim.split("\\s+").map(_.trim)val data = lines.tail.map(_.trim.split("\\s+"))val courseNames = header.drop(2)val statsTotal = calculateStatistics(data, courseNames)val statsMales = calculateStatistics(data.filter(_ (1) == "male"), courseNames)val statsFemales = calculateStatistics(data.filter(_ (1) == "female"), courseNames)printStatistics(statsTotal, "")printStatistics(statsMales, " (males)")printStatistics(statsFemales, " (females)")}def calculateStatistics(data: List[Array[String]], courses: Array[String]): List[(String, Double, Double, Double)] = {val courseScores = courses.indices.map { i =>val scores = data.filter(_(i + 2).matches("-?\\d+(\\.\\d+)?")).map(_(i + 2).toDouble) // Ensure we only have numbersif (scores.isEmpty) {(courses(i), 0.0, 0.0, 0.0) // Avoid division by zero if there are no scores for a course} else {val average = scores.sum / scores.lengthval min = scores.minval max = scores.max(courses(i), average, min, max)}}courseScores.toList}def printStatistics(stats: List[(String, Double, Double, Double)], title: String): Unit = {println(s"course    average   min   max")stats.foreach { case (course, average, min, max) =>println(f"$course: $average%.2f $min%.2f $max%.2f")}println()}
}

结果输出

863901a5a3574a379fa6ddeb9959c63c.png

二、RDD编程初级实践

1.spark-shell交互式编程

使用chapter5-data1.txt,该数据集包含了某大学计算机系的成绩,数据格式如下所示:

Tom,DataBase,80

Tom,Algorithm,50

Tom,DataStructure,60

Jim,DataBase,90

Jim,Algorithm,60

Jim,DataStructure,80

……

请根据给定的实验数据,在spark-shell中通过编程来计算以下内容:

(1)该系总共有多少学生;

(2)该系共开设来多少门课程;

(3)Tom同学的总成绩平均分是多少;

(4)求每名同学的选修的课程门数;

(5)该系DataBase课程共有多少人选修;

(6)各门课程的平均分是多少;

(7)使用累加器计算共有多少人选了DataBase这门课。

相关代码:

(1)
val lines = sc.textFile("file:///home/qiangzi/chapter5-data1.txt") 
val par = lines.map(row=>row.split(",")(0)) 
val distinct_par = par.distinct() //去重操作 
distinct_par.count //取得总数
(2)
val lines = sc.textFile("file:///home/qiangzi/chapter5-data1.txt") 
val par = lines.map(row=>row.split(",")(1))
val distinct_par = par.distinct() 
distinct_par.count
(3)
val lines = sc.textFile("file:///home/qiangzi/chapter5-data1.txt")
val pare = lines.filter(row=>row.split(",")(0)=="Tom")
pare.foreach(println)
pare.map(row=>(row.split(",")(0),row.split(",")(2).toInt)).mapValues(x=>(x,1)).reduceByKey((x,y ) => (x._1+y._1,x._2 + y._2)).mapValues(x => (x._1 / x._2)).collect() 
(4)
val lines = sc.textFile("file:///home/qiangzi/chapter5-data1.txt")
val pare = lines.map(row=>(row.split(",")(0),row.split(",")(1)))
pare.mapValues(x => (x,1)).reduceByKey((x,y) => (" ",x._2 + y._2)).mapValues(x => x._2).foreach(println)
(5)
val lines = sc.textFile("file:///home/qiangzi/chapter5-data1.txt")
val pare = lines.filter(row=>row.split(",")(1)=="DataBase")
pare.count
(6)
val lines = sc.textFile("file:///home/qiangzi/chapter5-data1.txt")
val pare = lines.map(row=>(row.split(",")(1),row.split(",")(2).toInt))
pare.mapValues(x=>(x,1)).reduceByKey((x,y) => (x._1+y._1,x._2 + y._2)).mapValues(x => (x._1/ x._2)).collect().foreach(x => println(s"${x._1}: ${x._2}"))
(7)
val lines = sc.textFile("file:///home/qiangzi/chapter5-data1.txt")
val pare = lines.filter(row=>row.split(",")(1)=="DataBase").map(row=>(row.split(",")(1),1))
val accum = sc.longAccumulator("My Accumulator")
pare.values.foreach(x => accum.add(x))
accum.value

2.编写独立应用程序实现数据去重

对于两个输入文件A和B,编写Spark独立应用程序,对两个文件进行合并,并剔除其中重复的内容,得到一个新文件C。下面是输入文件和输出文件的一个样例,供参考。

输入文件A的样例如下:

20170101    x

20170102    y

20170103    x

20170104    y

20170105    z

20170106    z

输入文件B的样例如下:

20170101    y

20170102    y

20170103    x

20170104    z

20170105    y

根据输入的文件A和B合并得到的输出文件C的样例如下:

20170101    x

20170101    y

20170102    y

20170103    x

20170104    y

20170104    z

20170105    y

20170105    z

20170106    z

实验代码:

cd ~  # 进入用户主文件夹
mkdir ./remdup
mkdir -p ./remdup/src/main/scala
vim ./remdup/src/main/scala/RemDup.scala/* RemDup.scala */
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf
import org.apache.spark.HashPartitionerobject RemDup {def main(args: Array[String]) {val conf = new SparkConf().setAppName("RemDup")val sc = new SparkContext(conf)val dataFileA = "file:///home/qiangzi/A.txt"val dataFileB = "file:///home/qiangzi/B.txt"val dataA = sc.textFile(dataFileA, 2)val dataB = sc.textFile(dataFileB, 2)val res = dataA.union(dataB).filter(_.trim().length > 0).map(line => (line.trim, "")).partitionBy(new HashPartitioner(1)).groupByKey().sortByKey().keysres.saveAsTextFile("file:///home/qiangzi/C.txt")}
}cd ~/remdup
vim simple.sbt/* simple.sbt*/
name := "Simple Project"
version := "1.0"
scalaVersion := "2.12.18"
libraryDependencies += "org.apache.spark" %% "spark-core" % "3.5.1"/usr/local/sbt-1.9.0/sbt/sbt package/usr/local/spark-3.5.1/bin/spark-submit --class "RemDup" --driver-java-options "-Dfile.encoding=UTF-8" ~/remdup/target/scala-2.12/simple-project_2.12-1.0.jar

3.编写独立应用程序实现求平均值问题

每个输入文件表示班级学生某个学科的成绩,每行内容由两个字段组成,第一个是学生名字,第二个是学生的成绩;编写Spark独立应用程序求出所有学生的平均成绩,并输出到一个新文件中。下面是输入文件和输出文件的一个样例,供参考。

Algorithm成绩:

小明 92

小红 87

小新 82

小丽 90

Database成绩:

小明 95

小红 81

小新 89

小丽 85

Python成绩:

小明 82

小红 83

小新 94

小丽 91

平均成绩如下:

    (小红,83.67)

    (小新,88.33)

    (小明,89.67)

    (小丽,88.67)

实验代码:

cd ~  # 进入用户主文件夹
mkdir ./avgscore
mkdir -p ./avgscore/src/main/scala
vim ./avgscore/src/main/scala/AvgScore.scala/* AvgScore.scala */
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf
import org.apache.spark.HashPartitionerobject AvgScore {def main(args: Array[String]) {val conf = new SparkConf().setAppName("AvgScore")val sc = new SparkContext(conf)val dataFiles = Array("file:///home/qiangzi/Sparkdata/algorithm.txt","file:///home/qiangzi/Sparkdata/database.txt","file:///home/qiangzi/Sparkdata/python.txt")val data = dataFiles.foldLeft(sc.emptyRDD[String]) { (acc, file) =>acc.union(sc.textFile(file, 3))}val res = data.filter(_.trim().length > 0).map(line => {val fields = line.split(" ")(fields(0).trim(), fields(1).trim().toInt)}).partitionBy(new HashPartitioner(1)).groupByKey().mapValues(x => {var n = 0var sum = 0.0for (i <- x) {sum += in += 1}val avg = sum / nf"$avg%1.2f"})res.saveAsTextFile("file:///home/qiangzi/Sparkdata/average.txt")}
}cd ~/avgscore
vim simple.sbt/* simple.sbt*/
name := "Simple Project"
version := "1.0"
scalaVersion := "2.12.18"
libraryDependencies += "org.apache.spark" %% "spark-core" % "3.5.1"/usr/local/sbt-1.9.0/sbt/sbt package/usr/local/spark-3.5.1/bin/spark-submit --class "AvgScore" --driver-java-options "-Dfile.encoding=UTF-8" ~/avgscore/target/scala-2.12/simple-project_2.12-1.0.jar

三、Spark SQL编程初级实践

1.Spark SQL基本操作

将下列JSON格式数据复制到Linux系统中,并保存命名为employee.json。

{ "id":1 , "name":" Ella" , "age":36 }

{ "id":2, "name":"Bob","age":29 }

{ "id":3 , "name":"Jack","age":29 }

{ "id":4 , "name":"Jim","age":28 }

{ "id":4 , "name":"Jim","age":28 }

{ "id":5 , "name":"Damon" }

{ "id":5 , "name":"Damon" }

为employee.json创建DataFrame,并写出Scala语句完成下列操作:

  1. 查询所有数据;
  2. 查询所有数据,并去除重复的数据;
  3. 查询所有数据,打印时去除id字段;
  4. 筛选出age>30的记录;
  5. 将数据按age分组;
  6. 将数据按name升序排列;
  7. 取出前3行数据;
  8. 查询所有记录的name列,并为其取别名为username;
  9. 查询年龄age的平均值;
  10. 查询年龄age的最小值。

实验代码:

(1)
import org.apache.spark.sql.SparkSession
val spark=SparkSession.builder().getOrCreate()
import spark.implicits._
val df = spark.read.json("file:///home/qiangzi/employee.json")
df.show()
(2)df.distinct().show()
(3)df.drop("id").show()
(4)df.filter(df("age") > 30 ).show()
(5)df.groupBy("age").count().show()
(6)df.sort(df("name").asc).show()
(7)df.take(3) 
(8)df.select(df("name").as("username")).show()
(9)val avgAge = df.agg(avg("age")).first().getDouble(0)
(10)val minAge = df.agg(min("age")).first().getLong(0).toInt

2.编程实现将RDD转换为DataFrame

源文件内容如下(包含id,name,age):

1,Ella,36

2,Bob,29

3,Jack,29

       请将数据复制保存到Linux系统中,命名为employee.txt,实现从RDD转换得到DataFrame,并按“id:1,name:Ella,age:36”的格式打印出DataFrame的所有数据。请写出程序代码。

实验代码:

cd ~  # 进入用户主文件夹
mkdir ./rddtodf
mkdir -p ./rddtodf/src/main/scala
vim ./rddtodf/src/main/scala/RDDtoDF.scala/* RDDtoDF.scala */
import org.apache.spark.sql.types._
import org.apache.spark.sql.Encoder
import org.apache.spark.sql.Row
import org.apache.spark.sql.SparkSessionobject RDDtoDF {def main(args: Array[String]) {val spark = SparkSession.builder().appName("RDDtoDF").getOrCreate()import spark.implicits._val employeeRDD = spark.sparkContext.textFile("file:///home/qiangzi/employee.txt")val schemaString = "id name age"val fields = schemaString.split(" ").map(fieldName => StructField(fieldName, StringType, nullable = true))val schema = StructType(fields)val rowRDD = employeeRDD.map(_.split(",")).map(attributes => Row(attributes(0).trim, attributes(1), attributes(2).trim))val employeeDF = spark.createDataFrame(rowRDD, schema)employeeDF.createOrReplaceTempView("employee")val results = spark.sql("SELECT id,name,age FROM employee")results.map(t => "id:" + t(0) + "," + "name:" + t(1) + "," + "age:" + t(2)).show()spark.stop()}
}cd ~/rddtodf
vim simple.sbt/*simple.sbt*/
name := "Simple Project"
version := "1.0"
scalaVersion := "2.12.18"
libraryDependencies ++= Seq("org.apache.spark" %% "spark-core" % "3.5.1","org.apache.spark" %% "spark-sql" % "3.5.1"
)/usr/local/sbt-1.9.0/sbt/sbt package/usr/local/spark-3.5.1/bin/spark-submit --class "RDDtoDF" --driver-java-options "-Dfile.encoding=UTF-8" ~/rddtodf/target/scala-2.12/simple-project_2.12-1.0.jar

3.编程实现利用DataFrame读写MySQL的数据

(1)在MySQL数据库中新建数据库sparktest,再创建表employee,包含如表6-2所示的两行数据。

6-2 employee表原有数据

id

name

gender

Age

1

Alice

F

22

2

John

M

25

(2)配置Spark通过JDBC连接数据库MySQL,编程实现利用DataFrame插入如表6-3所示的两行数据到MySQL中,最后打印出age的最大值和age的总和。

6-3 employee表新增数据

id

name

gender

age

3

Mary

F

26

4

Tom

M

23

实验代码:

mysql -u root -pcreate database sparktest;
use sparktest;
create table employee (id int(4), name char(20), gender char(4), age int(4));
insert into employee values(1,'Alice','F',22);
insert into employee values(2,'John','M',25);cd ~  # 进入用户主文件夹
mkdir ./testmysql
mkdir -p ./testmysql/src/main/scala
vim ./testmysql/src/main/scala/TestMySQL.scala/* TestMySQL.scala */
import java.util.Properties
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types._
import org.apache.spark.sql.Rowobject TestMySQL {def main(args: Array[String]): Unit = {val spark = SparkSession.builder().appName("TestMySQL").getOrCreate()val employeeRDD = spark.sparkContext.parallelize(Array("3 Mary F 26", "4 Tom M 23")).map(_.split(" "))val schema = StructType(List(StructField("id", IntegerType, true),StructField("name", StringType, true),StructField("gender", StringType, true),StructField("age", IntegerType, true)))val rowRDD = employeeRDD.map(p => Row(p(0).toInt, p(1).trim, p(2).trim, p(3).toInt))val employeeDF = spark.createDataFrame(rowRDD, schema)val prop = new Properties()prop.put("user", "root")prop.put("password", "789456MLq")prop.put("driver", "com.mysql.jdbc.Driver")employeeDF.write.mode("append").jdbc("jdbc:mysql://slave1:3306/sparktest", "sparktest.employee", prop)val jdbcDF = spark.read.format("jdbc").option("url", "jdbc:mysql://slave1:3306/sparktest").option("driver", "com.mysql.jdbc.Driver").option("dbtable", "employee").option("user", "root").option("password", "789456MLq").load()val aggregatedDF = jdbcDF.agg(max("age").alias("max_age"),sum("age").alias("total_age"))aggregatedDF.show()spark.stop()}
}cd ~/testmysql
vim simple.sbt/*simple.sbt*/
name := "Simple Project"
version := "1.0"
scalaVersion := "2.12.18"
libraryDependencies ++= Seq("org.apache.spark" %% "spark-core" % "3.5.1","org.apache.spark" %% "spark-sql" % "3.5.1"
)/usr/local/sbt-1.9.0/sbt/sbt packagesudo /usr/local/spark-3.5.1/bin/spark-submit --class "TestMySQL" --driver-java-options "-Dfile.encoding=UTF-8" --jars /usr/local/hive-3.1.2/lib/mysql-connector-java-5.1.49.jar ~/testmysql/target/scala-2.12/simple-project_2.12-1.0.jar

四、Spark Streaming编程初级实践

1.实验目的

  • 通过实验学习使用Scala编程实现文件和数据的生成;
  • 掌握使用文件作为Spark Streaming数据源的编程方法

2.实验内容

(1)、以随机时间间隔在一个目录下生成大量文件,文件名随机命名,文件中包含随机生成的一些英文语句,每个英语语句内部的单词之间用空格隔开。

(2)、实时统计每10秒新出现的单词数量。

(3)、实时统计最近1分钟内每个单词的出现次数(每10秒统计1次)。

(4)、实时统计每个单词累计出现次数,并将结果保存到本地文件(每10秒统计1次)。

3.注意

        本次实验中,实验(2)、(3)、(4)是在实验(1)的基础之上做的,因为要做流计算,所以实验(2)、(3)、(4)在打包完运行代码之前,一定要先执行(1)代码,具体步骤如下:

  • 创建好所需目录后,打开两个终端(也可以安装idea,<1>在idea中运行,<2>,<3>,<4>在终端运行),一个执行实验(1)代码,一个执行实验(2)、(3)、(4)
  • 在实验(2)、(3)、(4)打包完以后,先执行实验(1)代码,然后再执行(2)、(3)、(4)

3.实验代码

(1)

/*===================================================*/
这一部分代码,我是在idea中运行的,你也可以开两个终端,在其中
一个打包运行,
/*===================================================*/import java.io.{File, PrintWriter}object GenFile{def main(args: Array[String]) {val strList = List("There are three famous bigdata softwares","and they are widely used in real applications","For in that sleep of death what dreams may come","The slings and arrows of outrageous fortune","When we have shuffled off this mortal coil","For who would bear the whips and scorns of time","That patient merit of the unworthy takes","When he himself might his quietus make","To grunt and sweat under a weary life","But that the dread of something after death","And makes us rather bear those ills we have","Than fly to others that we know not of","Thus conscience does make cowards of us all","And thus the native hue of resolution","And enterprises of great pith and moment","And lose the name of action")var i = 0while (i < 10000){Thread.sleep(scala.util.Random.nextInt(5000))// 生成一个0到999之间的随机数,并转换为字符串var str = scala.util.Random.nextInt(1000).toStringval filePath = "/home/qiangzi/data/out"+str+".txt"// 创建PrintWriter对象,用于写入文件val out = new PrintWriter(new File(filePath))// 随机选择列表中的句子并写入文件for (m <- 0 to 3) out.println(strList(scala.util.Random.nextInt(14)))out.closei = i + 1}}
}

(2)

cd
mkdir ./wordcount
mkdir -p ./wordcount/src/main/scala
vim ./wordcount/src/main/scala/WordCount.scala
/* WordCount.scala*/
import org.apache.spark._
import org.apache.spark.streaming._
import org.apache.spark.SparkContext._
object WordCount{def main(args: Array[String]) {val sparkConf = new SparkConf().setAppName("WordCount").setMaster("local[2]")//设置为本地运行模式,两个线程,一个监听,另一个处理数据val sc = new SparkContext(sparkConf)sc.setLogLevel("ERROR")val ssc = new StreamingContext(sc, Seconds(10))   // 时间间隔为10秒val lines = ssc.textFileStream("file:///home/qiangzi/data")     // 设置文件流监控的目录     val words = lines.flatMap(_.split(" "))val wordCounts = words.count()wordCounts.print()ssc.start()ssc.awaitTermination()}
}cd ~/wordcount
vim simple.sbt
/*simple.sbt*/
name := "Simple Project"
version := "1.0"
scalaVersion := "2.12.18"
libraryDependencies ++= Seq("org.apache.spark" %% "spark-core" % "3.5.1","org.apache.spark" %% "spark-sql" % "3.5.1","org.apache.spark" %% "spark-streaming" % "3.5.1" // 添加spark-streaming依赖
)/usr/local/sbt-1.9.0/sbt/sbt package/usr/local/spark-3.5.1/bin/spark-submit --class "WordCount" --driver-java-options "-Dfile.encoding=UTF-8" ~/wordcount/target/scala-2.12/simple-project_2.12-1.0.jar

(3)

 cdmkdir ./wordcount1
mkdir -p ./wordcount1/src/main/scala
vim ./wordcount1/src/main/scala/WordCountOne.scala
import org.apache.spark._
import org.apache.spark.streaming._
import org.apache.spark.SparkContext._
import org.apache.spark.streaming.StreamingContext._object WordCount {def main(args: Array[String]) {// 设置Spark配置,应用程序名为"WordCountMinute",并设置本地模式运行,使用2个线程val sparkConf = new SparkConf().setAppName("WordCountMinute").setMaster("local[2]")val sc = new SparkContext(sparkConf)sc.setLogLevel("ERROR")// 创建StreamingContext对象,设置批处理间隔为10秒val ssc = new StreamingContext(sc, Seconds(10))// 设置数据源为文件流,监控指定目录下的文件变化val lines = ssc.textFileStream("file:///home/qiangzi/data")// 将每行文本分割成单词val words = lines.flatMap(_.split(" "))// 创建一个窗口化的DStream,窗口大小为60秒,滑动间隔为10秒val windowedWords = words.window(Seconds(60), Seconds(10))val wordCounts = windowedWords.flatMap(word => Array((word, 1))).reduceByKey(_ + _)var outputCount = 0// 对每个RDD进行操作,打印每个单词的计数wordCounts.foreachRDD { rdd =>// 增加输出计数outputCount += 1// 获取当前系统时间的毫秒数val currentTime = System.currentTimeMillis()println(s"-------------------------------------------")println(s"Time: $currentTime ms")println(s"-------------------------------------------")// 遍历RDD中的每个元素,打印单词和对应的计数rdd.foreach { case (word, count) =>println(s"$word: $count")}// 如果输出次数达到6次,则停止SparkContext和StreamingContextif (outputCount == 6) {println("Finished printing word counts for the last time.")ssc.stop(stopSparkContext = true, stopGracefully = true)}}ssc.start()ssc.awaitTermination()}
}cd ~/wordcount1vim simple.sbt/*simple.sbt*/
name := "Simple Project"
version := "1.0"
scalaVersion := "2.12.18"
libraryDependencies ++= Seq("org.apache.spark" %% "spark-core" % "3.5.1","org.apache.spark" %% "spark-sql" % "3.5.1","org.apache.spark" %% "spark-streaming" % "3.5.1" // 添加spark-streaming依赖
)/usr/local/sbt-1.9.0/sbt/sbt package/usr/local/spark-3.5.1/bin/spark-submit --class "WordCountOne" --driver-java-options "-Dfile.encoding=UTF-8" ~/wordcount1/target/scala-2.12/simple-project_2.12-1.0.jar

(4)

cd
mkdir ./wordcount2
mkdir -p ./wordcount2/src/main/scala
vim ./wordcount2/src/main/scala/WordCountTwo.scalaimport org.apache.spark._
import org.apache.spark.streaming._
import org.apache.spark.SparkContext._
import org.apache.spark.streaming.StreamingContext._
import java.text.SimpleDateFormat 
import java.util.Dateobject WordCountWithFileOutput {def main(args: Array[String]) {val sparkConf = new SparkConf().setAppName("WordCountWithFileOutput") .setMaster("local[2]") // 设置本地模式,使用2个线程val sc = new SparkContext(sparkConf) // 创建Spark上下文sc.setLogLevel("ERROR") val ssc = new StreamingContext(sc, Seconds(10)) // 创建Streaming上下文,设置批处理时间为10秒val lines = ssc.textFileStream("file:///home/qiangzi/data") // 监听目录,读取新增文件作为数据流val words = lines.flatMap(_.split(" ")) // 每行数据按空格切分,展平为单词流// 设置滑动窗口为6000秒长度,每10秒滑动一次(此处长度设置可能过大,实际使用中请根据需求调整)val windowedWords = words.window(Seconds(6000), Seconds(10))val wordCounts = windowedWords.flatMap(word => Array((word, 1))) .reduceByKey(_ + _) // 按单词聚合计数var outputCount = 0 wordCounts.foreachRDD { rdd =>outputCount += 1 val sdf = new SimpleDateFormat("yyyyMMdd_HHmmss") // 创建日期格式化对象val currentTimeStr = sdf.format(new Date(System.currentTimeMillis()))// 遍历RDD,将每个单词及其计数写入文件rdd.foreach { case (word, count) =>val outputFile = s"/home/qiangzi/dataout/${currentTimeStr}_wordcount.txt" // 构造输出文件路径val content = s"$word: $count\n" val bw = new java.io.BufferedWriter(new java.io.FileWriter(outputFile, true)) // 创建写入文件的对象bw.write(content) bw.close() }// 当输出计数达到600次时,停止SparkContext和StreamingContextif (outputCount == 600) {println("Finished writing word counts to files for the last time.")ssc.stop(stopSparkContext = true, stopGracefully = true)}}ssc.start() ssc.awaitTermination() }
}cd ./wordcount2vim simple.sbt/*simple.sbt*/
name := "Simple Project"
version := "1.0"
scalaVersion := "2.12.18"
libraryDependencies ++= Seq("org.apache.spark" %% "spark-core" % "3.5.1","org.apache.spark" %% "spark-sql" % "3.5.1","org.apache.spark" %% "spark-streaming" % "3.5.1" // 添加spark-streaming依赖
)/usr/local/sbt-1.9.0/sbt/sbt package/usr/local/spark-3.5.1/bin/spark-submit --class "WordCountWithFileOutput" --driver-java-options "-Dfile.encoding=UTF-8" ~/wordcount2/target/scala-2.12/simple-project_2.12-1.0.jar

五、

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/660054.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

通过ESXi主机和专业工具导出或导入虚拟机

关于导出虚拟机的用户场景 导出ESXi虚拟机是VMware内置功能之一&#xff0c;可用于数据迁移或作为ESXi备份解决方案。通常情况下&#xff0c;您可以将ESXi中的虚拟机导出为OVF模板&#xff0c;该模板可捕获虚拟机或虚拟设备的状态并存储在一个自包含的包中&#xff0c;其中磁盘…

Linux 设置 ssh 服务开机自启并允许 root 账户以密码验证身份登录

确保防火墙已允许 ssh 端口上的传入连接 一、查看系统是否已安装 OpenSSH Ubuntu dpkg --list | grep sshRedHat/CentOS rpm -qa | grep ssh二、修改 ssh 服务的 sshd_config 文件&#xff0c;以允许 root 账户以密码验证身份登录。 1、 从 sshd_config 中删除所有包含 “…

值得买科技新思路,导购电商的终点是“AI+出海”?

在以往&#xff0c;大众普遍认为品牌的消费者大多是高度忠诚人群&#xff0c;而事实上&#xff0c;非品牌忠诚者相比重度消费者&#xff0c;对促进品牌增长更为重要。 这类非品牌忠诚者被定义为摇摆的消费者群体&#xff0c;也就是那些购买品牌产品概率在20%-80%之间的消费者。…

新版本Qt Creator安装配置

新版本Qt Creator安装配置 文章目录 新版本Qt Creator安装配置1、前言2、环境3、安装配置4、总结 更多精彩内容&#x1f449;个人内容分类汇总 &#x1f448;&#x1f449;Qt开发经验 &#x1f448; 1、前言 Qt是一个跨平台的C应用程序开发框架&#xff0c;而Qt Creator是专为Q…

LLM 构建Data Multi-Agents 赋能数据分析平台的实践之③:数据分析之二(大小模型协同)

一、概述 随着新一代信息技术在产业数字化中的应用&#xff0c;产生了大量多源多模态信息以及响应的信息处理模式&#xff0c;数据孤岛、模型林立的问题也随之产生&#xff0c;使得业务系统臃肿、信息处理和决策效率低下&#xff0c;面对复杂任务及应用场景问题求解效率低。针…

MySQL__三大日志

文章目录 &#x1f60a; 作者&#xff1a;Lion J &#x1f496; 主页&#xff1a; https://blog.csdn.net/weixin_69252724 &#x1f389; 主题&#xff1a;Redis__三大日志 ⏱️ 创作时间&#xff1a;2024年04月30日 ———————————————— 对于MySQL来说, 有…

【小梦C嘎嘎——启航篇】C++四大类型转换

&#x1f60e; 前言&#x1f64c;C四大类型转换什么是类型转换C语言中的类型转换为什么C要嫌弃C语言的类型转换&#xff1f;自行搞一套呢&#xff1f;C强制类型转换1、static_cast2、reinterpret_cast3、const_cast4、dynamic_cast为什么要支持向下转呢&#xff1f; RTTI 总结撒…

MongoDB有必要升级新版本吗?

如今MongoDB已经发布了7.0版本&#xff0c;对于还在使用MongoDB低版本的用户来说&#xff0c;是否有必要升级&#xff1f; 为了促进MongoDB开源社区的发展&#xff0c;我们不断发布新版本&#xff0c;为用户提供更多优势特性&#xff0c;例如更快的性能、更好的安全性、更多的…

自动驾驶 | 仿真测试-HiL测试全解析

1.HiL 的定义 HiL&#xff08;Hardware-in-the-Loop&#xff09;硬件在环是计算机专业术语&#xff0c;也即是硬件在回路。通过使用 “硬件在环”(HiL) &#xff0c;可以显著降低开发时间和成本。在过去&#xff0c;开发电气机械元件或系统时,使用计算机仿真和实际的实验就已经…

金蝶云星空与阿里宜搭对接集成其他往来单位连通新增表单实例(basic-KY其他往来单位)

金蝶云星空与阿里宜搭对接集成其他往来单位连通新增表单实例(basic-KY其他往来单位) 来源系统:金蝶云星空 金蝶K/3Cloud&#xff08;金蝶云星空&#xff09;是移动互联网时代的新型ERP&#xff0c;是基于WEB2.0与云技术的新时代企业管理服务平台。金蝶K/3Cloud围绕着“生态、人…

Multi-Head Multi-Loss Model Calibration论文速读

文章目录 Multi-Head Multi-Loss Model Calibration摘要方法Multi-Head Ensemble Diversity 实验结果 Multi-Head Multi-Loss Model Calibration 摘要 当然&#xff0c;我会按照你的要求逐步列出&#xff1a; 背景&#xff1a; 提供有意义的不确定性估计对于机器学习模型在…

ORACLE 11G RAC 访问SQLSERVER

平时都是单机&#xff0c;RAC有点不一样&#xff0c;其实也一样。 目录 1.操作环境信息 2.安装GATEWAY 3.配置实例信息 4.配置监听 5.配置网络别名 6.创建到SQLSERVER的DBLINK 7.测试DBLINK有效性 1.操作环境信息 HIS PACS 数据库版本 ORACLE 11.2.0.4 RAC MS SQLSE…