【opencv4.8.1 源码编译】windows10 OpenCV 4.8.1源码编译并实现 CUDA 12加速

Windows 下使用 CMake3.29.2 + Visual Studio 2022 编译 OpenCV 4.8.1 及其扩展模块+cuda12.0+teslaT4显卡
记录自己在编译时踩过的坑,避免下次再犯或者给有需要的人。
在实际使用中,如果是对处理时间要求比较高的场景,使用OpenCV处理图片数据很难满足要求,不过OpenCV支持使用CUDA进行加速,不过支持CUDA加速的依赖包需要我们自行编译才可使用,因此在本次文章中,我们将演示如何使用OpenCV源码自行编译代码文件,来实现CUDA加速。感兴趣的小伙伴,请认真向下看哦。收藏关注我哦。
Visual Studio 2022 社区版本下载安装 https://visualstudio.microsoft.com/zh-hans/vs/ 假设你已经安装了,这里跳过安装步骤。进入opencv 安装环节

1、下载opencv 源码
第一步: 接下来需要下载OpenCV源码,此处需要下载两个源码,分别是opencv和opencv_contrib。下载链接为

由于我电脑pip install opencv-python 版本 4.8.1 ,为了一致性,我这里下载源码4.8.1 版本。

https://github.com/opencv/opencv/releases/tag/4.8.1
https://github.com/opencv/opencv_contrib/tags

下载完成之后,解压,会生成两个文件夹。
在这里插入图片描述

下一步我们下载cmake 工具。下载地址:

https://cmake.org/download/

最新版本为3.29.2: 选择 cmake-3.29.2-windows-x86_64.msi 进行下载安装
在这里插入图片描述
2. CMake编译项目
2.1 创建cmake项目
  打开CMake软件,设置项目源码路径,并在源码路径下创建一个build文件夹,并设置编译文件夹,如下图所示:
在这里插入图片描述
接下来点击Configure,进行第一次配置,然后回弹出编译平台选择,此处根据自己电脑的编译软件进行选择,在本文中我们使用的是Visual Studio 2022,然后选择编译平台为x64。
在这里插入图片描述
第一次配置生成后,输出如下所示:
在这里插入图片描述
2.2 设置编译配置
  首先添加opencv_contrib模块的引用,在OPENCV_EXTRA_MODULES_PATH条目中添加该模块的路径,然后选择OPENCV_ENABLE_NONFREE,如下图所示:
在这里插入图片描述
接下来添加CUDA的设置,首先选择WITH_CUDA,如下图所示:
勾上就行在这里插入图片描述
然后选择OPENCV_DNN_CUDA,此处还可以选择OPENCV_DNN_OPENVINO等不同的模型部署,如下图所示:
这两个再勾上
在这里插入图片描述

在这里插入图片描述
三个cuda 都勾上

最后选择ENABLE_FAST_MATH.勾上
在这里插入图片描述
此处为了让生成的依赖库文件都集成在一个文件中,方便后面使用,所以此处可以选择BUILD_opencv_world,如果不选择,生成的 文件将会被拆散成多个文件。
再次勾上 就对了
在这里插入图片描述
搜索 non 也勾上这个
在这里插入图片描述
在这里插入图片描述

将CUDA_ARCH_BIN显卡算力内容改成自己显卡的算力,删除小于自己显卡算力的部分,
官方网站查看算力

在这里插入图片描述

第二次Configure后,下一步就是需要检查一下其过程是否有异常抛出
在这里插入图片描述
首先查看一下配置输出框是否抛出警告,如果有的话,一定要解决一下,不然后续编译会出错。
在这里插入图片描述

2.3 解决异常
2.3.1 文件下载异常
首先呢,就是ffmpeg 这个下载异常,这个从官网下载

在这里插入图片描述
在这里插入图片描述

点击zip 版本。解压文件夹,下载后进行解压到指定文件夹下。并添加 bin 目录 到path 目录。再次验证

ffmpeg -version

在这里插入图片描述
安装ffmpeg 成功。

此时,最好看一下 CMake 的下载日志,下面的文件是 CMake 的下载日志。下载很多地方报错的,这如何是好,别着急,我们通过修改,
让它能够下载。
我主要是修改这几个地方:

a. 进入 C:/opencv-4.8.1/opencv-4.8.1/3rdparty/ippicv 目录 将 ippicv.cmake 的 https://raw.githubusercontent.com 修改为:https://raw.staticdn.netb. 进入 C:/opencv-4.8.1/opencv-4.8.1/3rdparty/fmpeg 目录 将 ffmpeg.cmake 的 https://raw.githubusercontent.com 修改为:https://raw.staticdn.netc. 进入 C:/opencv_contrib-4.8.1/opencv_contrib-4.8.1/modules/xfeatures2d/cmake 目录 将 download_boostdesc.cmake 中的https://raw.githubusercontent.com 修改为:https://raw.staticdn.netd. 进入 C:/opencv_contrib-4.8.1/opencv_contrib-4.8.1/modules/xfeatures2d/cmake 目录 将 download_vgg.cmake 中的 https://raw.githubusercontent.com 修改为:https://raw.staticdn.nete. 进入 C:/opencv_contrib-4.8.1/opencv_contrib-4.8.1/modules/face 目录 修改 CMakeLists.txt, 将https://raw.githubusercontent.com 修改为:https://raw.staticdn.net

在这里插入图片描述
有了这个加持,之后再重新"Configure"即可。

在这里插入图片描述
最后只剩下这两个错误了,
在CMakeList.txt 文件中增加一行:

if(POLICY CMP0148)cmake_policy(SET CMP0148 OLD)  # CMake 3.13+: option() honors normal variables.
endif()if(POLICY CMP0146)cmake_policy(SET CMP0146 OLD)  # CMake 3.13+: option() honors normal variables.
endif()

再次Configure,最后没有一个红色错误了,说明这一步成功了,接下来,点击"Generate"生成使用 CMake 构建的项目

在这里插入图片描述

3、接下来,点击"Generate"生成使用 CMake 构建的项目

在这里插入图片描述
最后点击"Open Project",唤起 Visual Studio 2022 打开该项目。当然也可以去输出编译的二进制文件的目录(C:/opencv-4.8.1/newbuild) ,打开 OpenCV.sln 文件达到同样的效果。
在这里插入图片描述

使用VS2019 (以管理员方式运行) 打开刚刚编译工程OpenCV.sln,在release|x64模式下,在解决方案资源管理器—>CMakeTargets—>右键点击ALL_BUILD–>生成。

INSTALL 生成成功后,这次编译算是大功告成了。我们完成了OpenCV4.8.1 及其扩展模块的编译。

们可以在输出编译的二进制文件的目录(E:/software/opencv-4.8.1/build)下找到 install 文件夹

linux

git clone https://github.com/opencv/opencv.git
git clone https://github.com/opencv/opencv_contrib.git
cd opencv
mkdir build
cd build
cmake -D CMAKE_BUILD_TYPE=RELEASE \-D CMAKE_INSTALL_PREFIX=/usr/local \-D INSTALL_C_EXAMPLES=ON \-D INSTALL_PYTHON_EXAMPLES=ON \-D OPENCV_GENERATE_PKGCONFIG=ON \-D OPENCV_EXTRA_MODULES_PATH=../opencv_contrib/modules \-D WITH_CUDA=ON \-D WITH_CUDNN=ON \-D CUDA_ARCH_BIN=7.5 \-D CUDA_ARCH_PTX=7.5 \-D WITH_TBB=ON \-D WITH_GDAL=ON \-D WITH_XINE=ON \-D BUILD_EXAMPLES=ON ..
make -j$(nproc)
sudo make install
sudo ldconfig

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/660849.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用Gradio搭建聊天UI实现质谱AI智能问答

一、调用智谱 AI API 1、获取api_key 智谱AI开放平台网址: https://open.bigmodel.cn/overview 2、安装库pip install zhipuai 3、执行一下代码,调用质谱api进行问答 from zhipuai import ZhipuAIclient ZhipuAI(api_key"xxxxx") # 填写…

ZooKeeper 搭建详细步骤之二(伪集群模式)

ZooKeeper 搭建详细步骤之三(真集群) ZooKeeper 搭建详细步骤之二(伪集群模式) ZooKeeper 搭建详细步骤之一(单机模式) ZooKeeper 及相关概念简介 伪集群搭建 ZooKeeper 伪集群是指在一个单一的物理或虚拟…

【架构】后端项目如何分层及分层领域模型简化

文章目录 一. 如何分层1. 阿里规范2. 具体案例分析 二. 分层领域模型的转换1. 阿里规范2. 模型种类简化分析 三. 小结 本文描述后端项目中如何进行分层,以及分层领域模型简化 一. 如何分层 1. 阿里规范 阿里的编码规范中约束分层逻辑如下: 开放接口层&#xff1a…

【华为 ICT HCIA eNSP 习题汇总】——题目集19

1、(多选)以下选项中,FTP 常用文件传输类型有()。 A、ASCII 码类型 B、二进制类型 C、EBCDIC 类型 D、本地类型 考点:应用层 解析:(AB) 文件传输协议(FTP&…

Mybatis.net + Mysql

项目文件结构 NuGet下载Mybatis.net相关包:IBatisNet 安装完成后,会显示在,在已安装页面。同时,在管理器中的引用列表中,会多出来两个引用文件 IBatisNet.CommonIBatisNet.DataMapper 安装 Mysql.data。 注意&#xff…

WIN10 anaconda 安装 CondaError: Run ‘conda init‘ before ‘conda activate‘

1 下载 https://www.anaconda.com/download/success 2 安装 3 修改环境变量 安装后修改环境变量 4 winrun 进入命令窗口 输入cmd 输入 conda info 5 创建 虚拟环境 conda create -n yolov8 python3.8 -y 6 CondaError: Run ‘conda init’ before ‘conda activate’ c…

基于python+django网易新闻+评论的舆情热点分析平台

博主介绍: 大家好,本人精通Java、Python、C#、C、C编程语言,同时也熟练掌握微信小程序、Php和Android等技术,能够为大家提供全方位的技术支持和交流。 我有丰富的成品Java、Python、C#毕设项目经验,能够为学生提供各类…

掌握JavaScript面向对象编程核心密码:深入解析JavaScript面向对象机制对象基础、原型模式与继承策略全面指南,高效创建高质量、可维护代码

ECMAScript(简称ES,是JavaScript的标准规范)支持面向对象编程,通过构造函数模拟类,原型链实现继承,以及ES6引入的class语法糖简化面向对象开发。对象可通过构造函数创建,使用原型链共享方法和属…

界面组件DevExpress中文教程 - 如何在Node.js应用中创建报表?

DevExpress Reporting是.NET Framework下功能完善的报表平台,它附带了易于使用的Visual Studio报表设计器和丰富的报表控件集,包括数据透视表、图表,因此您可以构建无与伦比、信息清晰的报表。 获取DevExpress Reporting最新正式版下载(Q技术…

如何查看我的Docker 容器和 `app.py` 脚本有足够的权限来读取 `config.json` 文件

要检查 Docker 容器和 app.py 脚本是否具有读取 config.json 文件的足够权限,你可以按照以下步骤操作: 检查宿主机上的文件权限: 在宿主机上,使用 ls -l 命令查看 config.json 文件的权限。 ls -l /path/to/config.json确保该文件…

【webrtc】MessageHandler 7: 基于线程的消息处理:切换main线程向observer发出通知

以当前线程作为main线程 RemoteAudioSource 作为一个handler 仅实现一个退出清理的功能 首先on message的处理会切换到main 线程 :main_thread_其次,这里在main 线程对sink_ 做清理再次,在main 线程做出状态改变,并能通知给所有的observer 做出on changed 行为。对接mediac…

预编码算法学习笔记

文章目录 1. 基本原理2. 常见应用2.1 自编码器2.2 变分自编码器2.3 稀疏自编码器 3. 学习笔记 在机器学习领域,预编码算法是一种强大的工具,用于将高维数据映射到低维表示,从而提取数据中的重要特征。本文将介绍预编码算法的基本原理、常见应…