11、Nvidia显卡驱动、CUDA、cuDNN、Anaconda及Tensorflow Pytorch版本

Nvidia显卡驱动、CUDA、cuDNN、Anaconda及Tensorflow-GPU版本

  • 一、确定版本关系
  • 二、安装过程
    • 1.安装显卡驱动
    • 2、安装CUDA
    • 3、安装cudnn
    • 4、安装TensorFlow
    • 5、安装pytorch
  • 三、卸载

一、确定版本关系

TensorFlow Pytorch推出cuda和cudnn的版本,cuda版本推出驱动可选版本

1、CUDA与显卡驱动
https://www.nvidia.com/Download/index.aspx
在这里插入图片描述

在这里插入图片描述

2、cuDNN Toolkit与CUDA版本
https://developer.nvidia.com/rdp/cudnn-archive
在这里插入图片描述
3、TensorFlow与CUDA cuDNN
https://tensorflow.google.cn/install/source?hl=en

在这里插入图片描述
4、Pytorch与CUDA cuDNN
https://pytorch.org/
在这里插入图片描述
在这里插入图片描述

5、cudnn
https://zhuanlan.zhihu.com/p/639184948
https://blog.csdn.net/Williamcsj/article/details/123514435

官方下载地址:https://developer.nvidia.com/rdp/cudnn-archive
在这里插入图片描述

安装TensorFlow

  1. 安装依赖包
    安装 TensorFlow 之前需要我们安装两个个依赖包,这里我的 cuda 版本为 11.1,cudnn 版本为 8.1.0,下载依赖包为
    libcudnn8_8.1.0.77-1+cuda11.2_amd64.deb
    libcudnn8-dev_8.1.0.77-1+cuda11.2_amd64.deb
    官网链接如下:https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/
    这里我使用 wget 下载:
    参考链接:https://blog.csdn.net/weixin_46584887/article/details/122726278
    官方教程:https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html
    在这里插入图片描述

二、安装过程

参考:
https://blog.csdn.net/m0_45447650/article/details/132058561
https://blog.csdn.net/weixin_46584887/article/details/122726278

1.安装显卡驱动

方法(1)在线安装

1. 卸载旧版本nvidia驱动
如果没有安装nvidia驱动,可直接跳过。$ sudo apt purge nvidia*
1
2. 把显卡驱动加入PPA
$ sudo add-apt-repository ppa:graphics-drivers
$ sudo apt update
1
2
3. 查找版本库中显卡驱动
使用以下命令查看系统版本库中所有nvidia驱动的信息,根据需要选择合适的版本。$ sudo apt-cache search nvidia
1
推荐使用以下命令,查看Ubuntu推荐的驱动版本,从中选择合适的版本。$ ubuntu-drivers devices
参考链接:https://blog.csdn.net/qq_28256407/article/details/115548675

方法(2)下载安装
https://www.nvidia.com/Download/index.aspx
在这里插入图片描述

可以参考:https://blog.csdn.net/Perfect886/article/details/119109380,之前是run文件,现在是def文件,Debian安装命令一般sudo dpkg -i 命令。
例如:sudo dpkg -i cuda-repo--X-Y-local_*_x86_64.deb

2、安装CUDA

方法一:用run方式,可以选择是否安装驱动,一般不选
https://developer.nvidia.com/cuda-downloads?
在这里插入图片描述
选择是否安装:https://zhuanlan.zhihu.com/p/501473091
在这里插入图片描述
配置环境

配置环境
gedit ~/.bashrc
在打开的文件中添加
export CUDA_HOME=/usr/local/cuda-11.1
export LD_LIBRARY_PATH=${CUDA_HOME}/lib64
export PATH=${CUDA_HOME}/bin:${PATH}
链接:https://blog.csdn.net/qq_39821101/article/details/116092190

方法二:官方教程:https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#
在这里插入图片描述
参考:https://blog.csdn.net/qq_39821101/article/details/116092190
https://blog.csdn.net/m0_45447650/article/details/132058561

3、安装cudnn

(1)下载安装:cudann
https://developer.nvidia.com/rdp/cudnn-archive
在这里插入图片描述

2 安装deb文件(安装 TensorFlow 之前需要我们安装两个个依赖包)
官方下载地址:https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/
在这里插入图片描述

使用如下语句依次安装:(debain命令,Ubuntu也可以)
sudo dpkg -i libcudnn8_8.0.3.33-1+cuda11.0_amd64.deb
sudo dpkg -i libcudnn8-dev_8.0.3.33-1+cuda11.0_amd64.deb
sudo dpkg -i libcudnn8-samples_8.0.3.33-1+cuda11.0_amd64.deb

Ubuntu命令,作为参考

执行以下命令:
sudo apt install ./cudnn-local-repo-ubuntu2004-*amd64.deb
sudo cp /var/cudnn-local-repo-ubuntu2004-8.4.1.88/cudnn-local-4B348671-keyring.gpg /usr/share/keyrings/
sudo apt update
#下面自动匹配版本,注意版本不对会出错
sudo apt install libcudnn8
sudo apt install libcudnn8-dev
sudo apt install libcudnn8-samples

参考:https://zhuanlan.zhihu.com/p/126997172
https://zhuanlan.zhihu.com/p/639184948

4、安装TensorFlow

pip install -i https://mirrors.aliyun.com/pypi/simple tensorflow

#(2)查看cuda是否可用
import tensorflow as tf
print(tf.test.is_gpu_available())#如果结果是True,表示GPU可用

5、安装pytorch

pip3 install torch torchvision torchaudio

import torch
print(torch.__version__)
print(torch.cuda.is_available())

在这里插入图片描述

三、卸载

1. 卸载旧版本nvidia驱动
如果没有安装nvidia驱动,可直接跳过。
$ sudo apt purge nvidia*2、卸载cuda
#只执行这条可以
sudo apt-get autoremove nvidia-cuda-toolkitcd /usr/local/cuda-11.1/bin
sudo ./cuda-uninstaller
sudo rm -rf /usr/local/cuda-11.1
从https://developer.nvidia.com/cuda-toolkit-archive下载对应版本的cuda
如果你之前执行过sudo apt-get install nvidia-cuda-toolkit,需要卸载:sudo apt-get autoremove nvidia-cuda-toolkitsudo  apt-get install nvidia-cuda-toolkit
# 卸载
sudo apt-get autoremove nvidia-cuda-toolkit
在终端输入
nvcc -V
没有cuda版本信息,则卸载成功
链接:https://blog.csdn.net/qq_39821101/article/details/1160921903、卸载cudnn
查询:
sudo dpkg -l | grep cudnn
将其全部卸载:
sudo dpkg -r libcudnn8-samples
sudo dpkg -r libcudnn8-dev
sudo dpkg -r libcudnn8检查:
输入下面指令后,没有任何输出即卸载成功。
sudo dpkg -l | grep cudnn
接:https://blog.csdn.net/Williamcsj/article/details/123514435

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/66122.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【不限于联想Y9000P电脑关盖再打开时黑屏的解决办法】

不限于联想Y9000P电脑关盖再打开时黑屏的解决办法 问题的前言问题的出现问题拟解决 问题的前言 事情发生在昨天,更新了Win11系统后: 最惹人注目的三处地方就是: 1.可以查看时间的秒数了; 2.右键展示的内容变窄了; 3.按…

Oracle database Linux自建环境备份至远端服务器自定义保留天数

环境准备 linux下安装oracle 请看 oracle12c单节点部署 系统版本: CentOS 7 软件版本: Oracle12c 备份策略与实现方法 此次备份依赖Oracle自带命令exp与linux下crontab命令(定时任务) exp Oracle中exp命令是一个用于导出数据库数据和对象的…

教你如何为博客网站申请阿里云的免费域名HTTPS证书

如何为博客网站申请阿里云的免费域名HTTPS证书 文章目录 如何为博客网站申请阿里云的免费域名HTTPS证书前置条件:步骤1 例如阿里云控制台,选择SSL证书步骤2 申请购买免费证书步骤3 创建证书步骤3.1 证书申请步骤3.2 DNS域名验证 步骤4 等待证书审核成功&…

【产品设计】移动端表单设计

本文主要是根据项目的表单填写体验差被客户撤下线重新整改,而对此将表单进行了新的用户体验设计的一些构思。 一、现状 传统的PC端空间范围大,能够将表单的所有信息连同温馨提示语等平铺展示出来,但是一下子用户看到这么多内容会给用户带来压…

【设计模式】责任链模式

顾名思义,责任链模式(Chain of Responsibility Pattern)为请求创建了一个接收者对象的链。这种模式给予请求的类型,对请求的发送者和接收者进行解耦。这种类型的设计模式属于行为型模式。 在这种模式中,通常每个接收者…

腾讯云轻量应用服务器搭建WordPress网站教程

腾讯云百科分享使用腾讯云轻量应用服务器搭建WordPress网站教程流程,WordPress 是全球最流行的开源的博客和内容管理网站的建站平台,具备使用简单、功能强大、灵活可扩展的特点,提供丰富的主题插件。腾讯云轻量应用服务器提供 WordPress 应用…

C++:模拟实现list

文章目录 迭代器模拟实现 本篇模拟实现简单的list和一些其他注意的点 迭代器 如下所示是利用拷贝构造将一个链表中的数据挪动到另外一个链表中&#xff0c;构造两个相同的链表 list(const list<T>& lt) {emptyinit();for (auto e : lt){push_back(e);} }void test_…

二叉树(4)------收尾

1)最大二叉树 654. 最大二叉树 - 力扣&#xff08;LeetCode&#xff09; 题目解析: 1)首先我们找到了整个数组中最大的元素作为我们的根节点&#xff0c;然后再从左区间中找到最大的元素作为当前根节点的左子树&#xff0c;然后再从右区间里面找到最大的元素作为根节点的右子树…

8.10 用redis实现缓存功能和Spring Cache

什么是缓存? 缓存(Cache), 就是数据交换的缓冲区,俗称的缓存就是缓冲区内的数据,一般从数据库中获取,存储于本地代码。 通过Redis来缓存数据&#xff0c;减少数据库查询操作; 逻辑 每个分类的菜品保存一份缓存数据 数据库菜品数据有变更时清理缓存数据 如何将商品数据缓存起…

<Vite>HMR实现原理

什么是HMR&#xff1f; HMR&#xff08;Hot Module Replacement&#xff09;是一种开发工具&#xff0c;也就是热更新。用于在应用程序运行时替换、添加或删除模块&#xff0c;而无需完全重新加载整个页面或重新启动应用程序。这可以极大地提高开发效率和调试体验。 HMR的优势 …

JAVA日期相关操作

JAVA日期相关操作 计算两个日期相差的天数 /*** 计算两个日期相差的 天数* param smdate String类型初始时间* param bdate String类型截至时间* return Integer*/public static Integer dayCompare(String smdate, String bdate) throws Exception {Date start sdf.par…

深度学习快速入门系列---损失函数

在深度学习中&#xff0c;损失函数的作用是量化预测值和真实值之间的差异&#xff0c;使得网络模型可以朝着真实值的方向预测&#xff0c;损失函数通过衡量模型预测结果与真实标签之间的差异&#xff0c;反映模型的性能。同时损失函数作为一个可优化的目标函数&#xff0c;通过…