CSAPP | Floating Point

CSAPP | Floating Point

b i b_i bi b i − 1 b_{i-1} bi1 b 2 b_2 b2 b 1 b_1 b1 b 0 b_0 b0 b − 1 b_{-1} b1 b − 2 b_{-2} b2 b − 3 b_{-3} b3 b − j b_{-j} bj
S = ∑ k = − j i b k × 2 k S=\sum_{k=-j}^{i}b_k\times2^k S=k=jibk×2k

IEEE Standard 754

浮点数表示方法

v = ( − 1 ) s × M × 2 E v=(-1)^s\times M\times 2^E v=(1)s×M×2E
符号位 Sign: 0 表示正,1 表示负。
尾数 Significand M: ∈ [ 1.0 , 2.0 ) \in [1.0, 2.0) [1.0,2.0)
阶码 exponent: E 对浮点数加权,权重为 2 的 E 次幂。

浮点数分为三个域:符号、阶码、 尾数
sign (1 bit) | exponent (e bit) | fraction(or mantissa) (f bit)

sign 直接编码符号 s
k 位阶码字段 e x p = e k − 1 . . . e 1 e 0 exp=e_{k-1}...e_1e_0 exp=ek1...e1e0 编码了 E(但是不等同于 E)
n 位小数字段 f r a c = f n − 1 . . . f 1 f 0 frac=f_{n-1}...f_1f_0 frac=fn1...f1f0 编码了 M(但是不等同于 M)

规格化值

1.exp ≠ \neq = 000…0 and exp ≠ \neq = 111…1

2.阶码字段以 biased(偏置) 形式表示,E = Exp - Bias,Exp 为无符号数,Exp 的范围为 00000001 ∼ 11111110 0000 0001 \sim 1111 1110 0000000111111110 1 ∼ 254 1 \sim 254 1254。Bias 为 2 k − 1 − 1 2^{k-1}-1 2k11,由此产生的指数取值范围,单精度为 − 126 ∼ + 127 -126\sim +127 126+127,双精度为 − 1022 ∼ + 1023 -1022\sim +1023 1022+1023

3.小数字段 frac 被解释为描述小数值 f, f ∈ [ 0 , 1 ) f \in [0,1) f[0,1), 二进制表示为 0. f n − 1 . . . f 1 f 0 0.f_{n-1}...f_1f_0 0.fn1...f1f0。尾数定义为 M = 1 + f M=1+f M=1+f。可以把 M 看作为二进制表示为 1. f n − 1 . . . f 1 f 0 1.f_{n-1}...f_1f_0 1.fn1...f1f0

4.对于尾数,我们可以“抛掉”小数点左边的 1,只看右侧。M 最小的时候 frac = 000…0(M = 1.0),M 最大的时候 frac = 111…1(M = 2.0 - ε \varepsilon ε,也就是 1.111…1)
IEEE754浮点数阶码为什么需要偏置bias

Single precision: 32 bits

Double Precision: 64 bits

Example

对于浮点数 F = 15213.0
1521 3 10 15213_{10} 1521310
= 1110110110110 1 2 = 1110 1101 1011 01_2 =111011011011012
= 1.110110110110 1 2 × 2 13 =1.110 1101 1011 01_2 \times 2^{13} =1.11011011011012×213

Significand

M = 1.110110110110 1 2 M=1.110 1101 1011 01_2 M=1.11011011011012
f r a c = 1101101101101000000000 0 2 frac=110 1101 1011 01 0000 0000 00_2 frac=110110110110100000000002(23 bits)

Exponent

E = 13 E = 13 E=13 因为 2 的幂是 13
B i a s = 127 Bias=127 Bias=127 因为 float 单精度表示,k = 8, B i a s = 2 k − 1 − 1 = 2 7 − 1 = 127 Bias=2^{k-1}-1=2^7-1=127 Bias=2k11=271=127
E x p = 140 = 1000110 0 2 = E + B i a s Exp=140=10001100_2=E + Bias Exp=140=100011002=E+Bias

Result

0 10001100 1101101101101000000000 0 2 0~~10001100~110 1101 1011 01 0000 0000 00_2 0  10001100 110110110110100000000002
从左到右分别为 s exp frac

非规格化值

如果使用规格化数,总是使 M ≥ 1 M \geq 1 M1,就无法表示 0。而 +0.0 的浮点表示位模式为全 0。符号位为 0,阶码字段为 0,是一个非规格化值。然而此时 M = f = 0。如果符号位为 1,那么就是 -0.0。

1.exp = 000…0 成立

2.E = 1 - Bias

3.M = 0.xxx…x

特殊的值

e x p = 111...1 , f r a c = 000...0 exp = 111...1, frac=000...0 exp=111...1,frac=000...0 代表无穷大
e x p = 111...1 , f r a c ≠ 000...0 exp=111...1,frac\neq 000...0 exp=111...1,frac=000...0 N a N ( n o t a n u m b e r ) NaN(not~a~number) NaN(not a number) E.g. sqrt(-1)

Visualization: Floating Point Encodings


对于 8 位浮点数:
k = 4 , B i a s = 2 3 − 1 = 7 , E = 1 − B i a s = 1 − 7 = − 6 k = 4, Bias=2^3-1=7,E = 1-Bias=1-7=-6 k=4,Bias=231=7,E=1Bias=17=6

对于非规格化值:
E = 1 − B i a s E=1-Bias E=1Bias
0 0000 000,M = 0, 0 × 2 − 6 = 0 0 \times 2^{-6} = 0 0×26=0
0 0000 001, M = 1 × 2 − 3 = 1 8 , 1 8 × 1 2 6 = 1 512 M=1\times 2^{-3}=\frac{1}{8}, \frac{1}{8} \times \frac{1}{2^6} = \frac{1}{512} M=1×23=81,81×261=5121

0 0000 111 为非规格化值所能表示的最大值
对于规格化值:
E = e x p − B i a s E=exp-Bias E=expBias
0 0001 000 此时 e x p = 1 , E = e x p − B i a s = 1 − 7 = − 6 , f r a c = 000 , M = 1.000 exp=1, E=exp-Bias=1-7=-6,frac=000,M=1.000 exp=1,E=expBias=17=6,frac=000,M=1.000,这是最小的规格化值。

Rounding

IEEE 现在有四种舍入方式,分别为 向零舍入、向下舍入、向上舍入、就近舍入(默认)

如何理解就近舍入?

当为中间数,要向最近的偶数(舍入后保留的最低有效位是偶数)舍入。

对于 7.8950000,9 是一个奇数,所以向上舍入。
对于 7.8850000,8 是一个偶数,所以向下舍入。

二进制数截断


对于 10.1110 0 2 10.11100_2 10.111002 如果直接截断,则为 10.11 是个奇数,所以应该加上 0.001

乘法

( ( − 1 ) s 1 × M 1 × 2 E 1 ) × ( ( − 1 ) s 2 × M 2 × 2 E 2 ) ((-1)^{s1}\times M1 \times 2^{E1}) \times ((-1)^{s2}\times M2 \times 2^{E2}) ((1)s1×M1×2E1)×((1)s2×M2×2E2)
S i g n s : s 1 ⊕ s 2 Sign~s: s1 \oplus s2 Sign s:s1s2
S i g n i f i c a n d M : M 1 × M 2 Significand~M:M1 \times M2 Significand M:M1×M2
E x p o n e n t E : E 1 + E 2 Exponent~E: E1 + E2 Exponent E:E1+E2

如果 M ≥ \geq 2,则须有右移位同时增加指数,来让尾数在 1 和 2 之间。
如果 E 超出范围,则会溢出到无穷大。
如果 M 有太多位,则需要就近舍入。

(3.14 + 1e10) - 1e10 = 0
3.14 + (1e10 - 1e10) = 3.14
1e20 ∗ * (1e20 - 1e20) = 0.0

Questions

int x = ...;
float f = ...;
double d = ...;x == (int)(float) x; // False, 在浮点数的 frac 区域没有足够的位来表示 int,会舍入
x == (int)(double) x; // True
f == (float)(double) f; // True
d == (double)(float) d; // False
f == -(-f); // True
2 / 3 == 2 / 3.0 // False, 2/3=0, 2/3.0 是一个浮点数
d < 0.0 -> ((d * 2) < 0.0) // Yes, 即使 d * 2 溢出到负无穷大,也是小于 0
d > f -> -f > -d // Yes
d * d >= 0.0 // Yes
(d + f) - d == f // No

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/662031.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Unity添加证件

目录 1.问题描述&#xff1a;2.解决方法&#xff1a;小结&#xff1a; 1.问题描述&#xff1a; 2.解决方法&#xff1a; 登录后跳转打开 添加证件 选择个人证件 小结&#xff1a; 关注我给大家分享更多有趣的知识&#xff0c;以下是个人公众号&#xff0c;提供 ||代码兼职||…

镜像部署和服务器步署的介绍和不同点

镜像部署通常指的是使用Docker容器进行部署&#xff0c;而服务器部署则是指直接在服务器的操作系统上安装依赖并运行项目。下面是两种部署方式的介绍和它们的主要不同点&#xff1a; 镜像部署&#xff08;Docker&#xff09;&#xff1a; 环境隔离&#xff1a;Docker通过容器…

arthas watch怎么监控指定参数值?

watch com.codex.terry.controller.HelloWorldController getUserInJson2 "{params,returnObj}" params[0] "world" -v 要分析的代码&#xff1a; 浏览器请求http://localhost:8080/say/tt&#xff0c;arthas控制台打印的信息如下&#xff1a; 浏览器请…

【题解 | 思维】三元组中心问题

三元组中心问题 注意点&#xff1a; 同一个位置的元素&#xff0c;不管以它为中心能组成多少个三元组&#xff0c;只记一个不同索引位置的相同元素&#xff0c;算多个中心元素。 常规暴力 import java.util.Scanner;public class Main {public static void main(String[] args…

ZABAPGIT问题,导入github上的程序包时报 DBSQL_DUPLICATE_KEY_ERROR

跟踪程序发现在94050行 INSERT seocompotx FROM TABLE it_descriptions 报的错 刚开始&#xff0c;不想着改动他&#xff0c;把seocompotx 表的数据做下指定清楚&#xff0c;但是5次清楚后&#xff0c;果断注释掉 改成 MODIFY seocompotx FROM TABLE it_descriptions。 在用…

[NeurIPS-23] GOHA: Generalizable One-shot 3D Neural Head Avatar

[pdf | proj | code] 本文提出一种基于单图的可驱动虚拟人像重建框架。基于3DMM给粗重建、驱动结果&#xff0c;基于神经辐射场给细粒度平滑结果。 方法 给定源图片I_s和目标图片I_t&#xff0c;希望生成图片I_o具有源图片ID和目标图片表情位姿。本文提出三个分支&#xff1a;…

静电纺聚丙烯腈(PAN)纳米纤维膜

静电纺聚丙烯腈&#xff08;PAN&#xff09;纳米纤维膜是通过静电纺丝技术制备的一种纳米级纤维膜材料。静电纺丝技术利用高压电场使带电的聚合物溶液或熔体在喷丝口形成细流&#xff0c;经过拉伸、固化后形成纳米纤维&#xff0c;最终收集形成纳米纤维膜。 PAN纳米纤维膜具有以…

第六篇:Python编程精粹:深入常用库与高效开发实践

Python编程精粹&#xff1a;深入常用库与高效开发实践 1 引言&#xff1a; 在数字世界中&#xff0c;Python已然成为一种杰出的工具&#xff0c;它的优雅、简洁和强大功能吸引了无数的开发者和研究者。Python之所以在多个领域内占据主导地位&#xff0c;一个重要的原因在于其强…

信号,信号列表,信号产生方式,信号处理方式

什么是信号 信号在我们的生活中非常常见&#xff1b;如红绿灯&#xff0c;下课铃&#xff0c;游戏团战信号&#xff0c;这些都是信号&#xff1b;信号用来提示接收信号者行动&#xff0c;但接收信号的人接收到信号会进行一系列的行为&#xff0c;完成某个动作&#xff1b;这就…

【IDEA】IDEA自带Maven/JDK,不需要下载

IDEA是由Java编写的&#xff0c;为了保证其运行&#xff0c;内部是自带JDK的。IDEA 2021 及 之后的版本是自带Maven的&#xff1a; 视频连接&#xff1a; https://www.bilibili.com/video/BV1Cs4y1b7JC?p4&spm_id_frompageDriver&vd_source5534adbd427e3b01c725714cd…

Leetcode 145:二叉树的后序遍历(迭代法)

给你一棵二叉树的根节点 root &#xff0c;返回其节点值的 后序遍历 。 思路&#xff1a; 迭代法的思路是&#xff0c;使用栈&#xff0c;一层一层的将树节点遍历入栈。 比如下面这个树&#xff0c;使用迭代法&#xff0c;1&#xff09;第一层&#xff0c;让根节点入栈。2&a…

顺序表的增删查改的实现以及讲解(一篇包懂)

一&#xff1a;顺序表的概念 顺序表是用一段 物理地址连续 的存储单元依次存储数据元素的线性结构&#xff0c;一般情况下采用数组存 储。在数组上完成数据的增删查改。 顺序表一般可以分为&#xff1a; 1. 静态顺序表&#xff1a;使用定长数组存储元素。 2. 动态顺序表&am…