7.1 动手实现AlexNet

AlexNet引入了dropput层
在这里插入图片描述

代码


import torch
from torch import nn
from d2l import torch as d2lnet = nn.Sequential(# 样本数为1,通道数为96,11x11的卷积核,步幅为4,减少输出的高度和深度。 LeNet的通道数才6,此处96,为什么要增加这么多通道呢?nn.Conv2d(1,96,kernel_size=11,stride=4,padding=1),nn.ReLU(),nn.MaxPool2d(kernel_size=3,stride=2),# 减小卷积窗口,使用填充2使输出的高与宽一致,且增大输出通道数nn.Conv2d(96,256,kernel_size=5,padding=2),nn.ReLU(),nn.MaxPool2d(kernel_size=3,stride=2),# 连续使用3个卷积层,通道数继续增加nn.Conv2d(256,384,kernel_size=3,padding=1),nn.ReLU(),nn.Conv2d(384,384,kernel_size=3,padding=1),nn.ReLU(),nn.Conv2d(384,256,kernel_size=3,padding=1),nn.ReLU(),nn.MaxPool2d(kernel_size=3,stride=2),nn.Flatten(),# 相对于LeNet,全连接增加了几倍,用dropout来减少过拟合nn.Linear(6400,4096),nn.ReLU(),nn.Dropout(p=0.5),nn.Linear(4096,4096),nn.ReLU(),nn.Dropout(p=0.5),nn.Linear(4096,10)
)# 样本数为1,通道数为1,224x224
X = torch.randn(1,1,224,224)
for layer in net:X = layer(X)print(layer.__class__.__name__,'output shape:\t',X.shape)
Conv2d output shape:	 torch.Size([1, 96, 54, 54])
ReLU output shape:	 torch.Size([1, 96, 54, 54])
MaxPool2d output shape:	 torch.Size([1, 96, 26, 26])
Conv2d output shape:	 torch.Size([1, 256, 26, 26])
ReLU output shape:	 torch.Size([1, 256, 26, 26])
MaxPool2d output shape:	 torch.Size([1, 256, 12, 12])
Conv2d output shape:	 torch.Size([1, 384, 12, 12])
ReLU output shape:	 torch.Size([1, 384, 12, 12])
Conv2d output shape:	 torch.Size([1, 384, 12, 12])
ReLU output shape:	 torch.Size([1, 384, 12, 12])
Conv2d output shape:	 torch.Size([1, 256, 12, 12])
ReLU output shape:	 torch.Size([1, 256, 12, 12])
MaxPool2d output shape:	 torch.Size([1, 256, 5, 5])
Flatten output shape:	 torch.Size([1, 6400])
Linear output shape:	 torch.Size([1, 4096])
ReLU output shape:	 torch.Size([1, 4096])
Dropout output shape:	 torch.Size([1, 4096])
Linear output shape:	 torch.Size([1, 4096])
ReLU output shape:	 torch.Size([1, 4096])
Dropout output shape:	 torch.Size([1, 4096])
Linear output shape:	 torch.Size([1, 10])
# 读取数据集, fashion_mnist的图片是28x28,为了满足AlexNet的输出,resize为224x224,通常来说这样并不好
batch_size = 128
train_iter,test_iter = d2l.load_data_fashion_mnist(batch_size,resize=224)# 训练
lr,num_epochs = 0.01,10
d2l.train_ch6(net,train_iter,test_iter,num_epochs,lr,device=d2l.try_gpu())

运行结果:

在这里插入图片描述

当训练轮数增加到20的结果

# 训练
lr,num_epochs = 0.01,20
d2l.train_ch6(net,train_iter,test_iter,num_epochs,lr,device=d2l.try_gpu())

在这里插入图片描述
结果提升了2点多。

改变模型的前两层,使模型可以直接输入28x28的图片

# 将输入由224变成28
net = nn.Sequential(nn.Conv2d(1,96,kernel_size=5,padding=2),nn.ReLU(),# 样本数为1,通道数为96,11x11的卷积核,步幅为4,减少输出的高度和深度。 LeNet的通道数才6,此处96,为什么要增加这么多通道呢?nn.MaxPool2d(kernel_size=3,stride=1),# 减小卷积窗口,使用填充2使输出的高与宽一致,且增大输出通道数nn.Conv2d(96,256,kernel_size=5,padding=2),nn.ReLU(),nn.MaxPool2d(kernel_size=3,stride=2),# 连续使用3个卷积层,通道数继续增加nn.Conv2d(256,384,kernel_size=3,padding=1),nn.ReLU(),nn.Conv2d(384,384,kernel_size=3,padding=1),nn.ReLU(),nn.Conv2d(384,256,kernel_size=3,padding=1),nn.ReLU(),nn.MaxPool2d(kernel_size=3,stride=2),nn.Flatten(),# 相对于LeNet,全连接增加了几倍,用dropout来减少过拟合nn.Linear(6400,4096),nn.ReLU(),nn.Dropout(p=0.5),nn.Linear(4096,4096),nn.ReLU(),nn.Dropout(p=0.5),nn.Linear(4096,10)
)
X = torch.randn(1,1,28,28)
for layer in net:X = layer(X)print(layer.__class__.__name__,'output shape:\t',X.shape)
Conv2d output shape:	 torch.Size([1, 96, 28, 28])
ReLU output shape:	 torch.Size([1, 96, 28, 28])
MaxPool2d output shape:	 torch.Size([1, 96, 26, 26])
Conv2d output shape:	 torch.Size([1, 256, 26, 26])
ReLU output shape:	 torch.Size([1, 256, 26, 26])
MaxPool2d output shape:	 torch.Size([1, 256, 12, 12])
Conv2d output shape:	 torch.Size([1, 384, 12, 12])
ReLU output shape:	 torch.Size([1, 384, 12, 12])
Conv2d output shape:	 torch.Size([1, 384, 12, 12])
ReLU output shape:	 torch.Size([1, 384, 12, 12])
Conv2d output shape:	 torch.Size([1, 256, 12, 12])
ReLU output shape:	 torch.Size([1, 256, 12, 12])
MaxPool2d output shape:	 torch.Size([1, 256, 5, 5])
Flatten output shape:	 torch.Size([1, 6400])
Linear output shape:	 torch.Size([1, 4096])
ReLU output shape:	 torch.Size([1, 4096])
Dropout output shape:	 torch.Size([1, 4096])
Linear output shape:	 torch.Size([1, 4096])
ReLU output shape:	 torch.Size([1, 4096])
Dropout output shape:	 torch.Size([1, 4096])
Linear output shape:	 torch.Size([1, 10])
# 读取数据集, fashion_mnist的图片是28x28,为了满足AlexNet的输出,resize为224x224,通常来说这样并不好
batch_size = 128
# train_iter,test_iter = d2l.load_data_fashion_mnist(batch_size,resize=224)
train_iter,test_iter = d2l.load_data_fashion_mnist(batch_size)# 训练
lr,num_epochs = 0.01,20
d2l.train_ch6(net,train_iter,test_iter,num_epochs,lr,device=d2l.try_gpu())

在这里插入图片描述
结果下降了1点左右

AlexNet哪一部分主要占用显存?哪一层占用最多的显存?

AlexNet里面不同层需要的参数大小决定了占用显存的大小

  第一层卷积层卷积核参数个数:11x11x3x96=34,848第二层卷积层卷积核参数个数:5x5x96x256=614,400第三层卷积层卷积核参数个数:3x3x256x384=884,736第四层卷积层卷积核参数个数:3x3x384x384=1,327,104第五层卷积层卷积核参数个数:3x3x384x256=884,736第一层全连层参数(权重+偏移):6400x4096+4096=26,218,496第二层全连层参数(权重+偏移):4096x4096+4096=16,781,312第三层全连层参数(权重+偏移):4096x1000+1000=4,100,096

所以是第一层全连层占用了最多的显存

在AlexNet中主要是哪部分需要更多的计算?

把运算分为乘法运算、加法运算和特殊运算(ReLu、池化)卷积层的计算次数:Ci x Co x Kw x Kh x Nw x Nh + Ci x Co x (Kw x Kh -1)x Nw x Nh + Co x (Ci-1) x Nw x Nh
池化层的计算次数:Nh x Nw x Ci
全连接层的计算次数:权重与变量相乘、结果相加、偏置项第一层卷积层计算次数:3x96x(2x11x11-1)x54x54+96x2x54x54=202,953,600
第一层卷积层的池化层计算次数:26x26x96=64896
第二层卷积层卷计算次数:96*256*(2*5*5-1)*26*26+256*95*26*26=830,495,744
第二层卷积层的池化层计算次数:12x12x256=36864
第三层卷积层计算次数:256*384*(2*3*3-1)*12*12+384*255*12*12=254748672
第四层卷积层计算次数:384*384*(2*3*3-1)*12*12+384*383*12*12=382150656
第五层卷积层计算次数:384*256*(2*3*3-1)*12*12+256*383*12*12=254767104
第五层卷积层池化层计算次数:5x5x256=6400
第一层全连层计算次数:6400*4096+4096*(6400-1)+4096=52,428,800
第二层全连层计算次数:4096*4096+4096*(4096-1)+4096=33,554,432
第三层全连层计算次数:1000*4096+1000*4095+1000=8,192,000第二层卷积层需要最多次数的计算,卷积层的运算次数与输入通道数、输出通道数、图片大小、卷积核大小都有关。

参考链接

【动手学深度学习】之 现代卷积神经网络 AlexNet VGGNet NIN 习题解答
https://blog.csdn.net/weixin_51580530/article/details/128619145

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/66396.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

VS2017 查看dll

dumpbin /exports xxxx.dll 导出函数 dumpbin /dependents xxxx.dll 依赖关系

打造数字化营销闭环,破解精准获客难题

现阶段,企业需要进行数字化营销闭环,以实现更精确的客户获取。随着数字技术的迅猛发展,企业需要将在线广告、社交媒体营销和数据分析等工具相互结合,建立一个完整的数字化营销流程。通过使用客户细分、精准定位和个性化广告等手段…

layui的基本使用-日期控件的业务场景使用入门实战案例一

效果镇楼&#xff1b; 1 前端UI层面&#xff1b; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge"><meta name"viewport&…

基于K8S环境部署Dolphinscheduler及简单应用

一、Dolphinscheduler简介 Apache DolphinScheduler 是一个分布式易扩展的可视化DAG工作流任务调度开源系统。适用于企业级场景,提供了一个可视化操作任务、工作流和全生命周期数据处理过程的解决方案。 Apache DolphinScheduler 旨在解决复杂的大数据任务依赖关系,并为应用…

学C的第三十三天【C语言文件操作】

相关代码gitee自取&#xff1a; C语言学习日记: 加油努力 (gitee.com) 接上期&#xff1a; 学C的第三十二天【动态内存管理】_高高的胖子的博客-CSDN博客 1 . 为什么要使用文件 以前面写的通讯录为例&#xff0c;当通讯录运行起来的时候&#xff0c;可以给通讯录中增加、删…

Java课题笔记~ JSP开发模型

MVC 1.JSP演化历史 1. 早期只有servlet&#xff0c;只能使用response输出标签数据&#xff0c;非常麻烦 2. 后来有了jsp&#xff0c;简化了Servlet的开发&#xff0c;如果过度使用jsp&#xff0c;在jsp中即写大量的java代码&#xff0c;有写html表&#xff0c;造成难于维护&…

生信豆芽菜-单基因与基因集的关系

网址&#xff1a;http://www.sxdyc.com/panCancerGeneSet 该工具主要用于查看单基因在泛癌中与各个不同基因集的相关性 提交后等待运行成功即可&#xff0c;还可以关注公众号&#xff1a;豆芽数据分析

runtime error: member access within misaligned address(力扣最常见错误之一)

runtime error: member access within misaligned address&#xff08;力扣最常见错误之一&#xff09; 前言原因和解决办法总结 前言 最近博主在刷力扣时&#xff0c;明明代码逻辑都没问题&#xff0c;但总是报下面这个错误&#xff1a; runtime error: member access within…

vscode的ros拓展(插件)无法渲染urdf

文章目录 1.事件背景2.资料调查3.解决方案3.1.使用0.9.4版本3.2.使用脚本自己调用rviz渲染 1.事件背景 之前在vscode中一直用得好好的urdf预览功能&#xff0c;突然在某一天&#xff0c;不行了。 执行 URDF Preview之后&#xff0c;虽然弹出了一个URDF Preview的窗口&#xff…

JAVA Android 正则表达式

正则表达式 正则表达式是对字符串执行模式匹配的技术。 正则表达式匹配流程 private void RegTheory() {// 正则表达式String content "1998年12月8日&#xff0c;第二代Java平台的企业版J2EE发布。1999年6月&#xff0c;Sun公司发布了第二代Java平台(简称为Java2) &qu…

掌握Python的X篇_33_MATLAB的替代组合NumPy+SciPy+Matplotlib

numPy 通常与 SciPy( Scientific Python )和 Matplotlib (绘图库)一起使用&#xff0c;这种组合广泛用于替代 MatLab&#xff0c;是一个强大的科学计算环境&#xff0c;有助于我们通过 Python 学习数据科学或者机器学习。 文章目录 1. numpy1.1 numpy简介1.2 矩阵类型的nparra…

UI美工设计岗位的基本职责概述(合集)

UI美工设计岗位的基本职责概述1 1、有良好的美术功底、设计新颖&#xff0c;整体配色及设计创意理念&#xff0c;能够独立完成整个网站页面设计及制作; 2、熟练运用DIV CSS&#xff0c;HTML 设计制作网页 ; 3、熟练运用Photoshop,Dreamweaver,Coreldraw(或Illustrator),Fla…