2023年国赛数学建模思路 - 案例:FPTree-频繁模式树算法

文章目录

    • 算法介绍
    • FP树表示法
    • 构建FP树
    • 实现代码
  • 建模资料

## 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

算法介绍

FP-Tree算法全称是FrequentPattern Tree算法,就是频繁模式树算法,他与Apriori算法一样也是用来挖掘频繁项集的,不过不同的是,FP-Tree算法是Apriori算法的优化处理,他解决了Apriori算法在过程中会产生大量的候选集的问题,而FP-Tree算法则是发现频繁模式而不产生候选集。但是频繁模式挖掘出来后,产生关联规则的步骤还是和Apriori是一样的。

常见的挖掘频繁项集算法有两类,一类是Apriori算法,另一类是FP-growth。Apriori通过不断的构造候选集、筛选候选集挖掘出频繁项集,需要多次扫描原始数据,当原始数据较大时,磁盘I/O次数太多,效率比较低下。FPGrowth不同于Apriori的“试探”策略,算法只需扫描原始数据两遍,通过FP-tree数据结构对原始数据进行压缩,效率较高。

FP代表频繁模式(Frequent Pattern) ,算法主要分为两个步骤:FP-tree构建、挖掘频繁项集。

FP树表示法

FP树通过逐个读入事务,并把事务映射到FP树中的一条路径来构造。由于不同的事务可能会有若干个相同的项,因此它们的路径可能部分重叠。路径相互重叠越多,使用FP树结构获得的压缩效果越好;如果FP树足够小,能够存放在内存中,就可以直接从这个内存中的结构提取频繁项集,而不必重复地扫描存放在硬盘上的数据。

一颗FP树如下图所示:
  在这里插入图片描述
通常,FP树的大小比未压缩的数据小,因为数据的事务常常共享一些共同项,在最好的情况下,所有的事务都具有相同的项集,FP树只包含一条节点路径;当每个事务都具有唯一项集时,导致最坏情况发生,由于事务不包含任何共同项,FP树的大小实际上与原数据的大小一样。

FP树的根节点用φ表示,其余节点包括一个数据项和该数据项在本路径上的支持度;每条路径都是一条训练数据中满足最小支持度的数据项集;FP树还将所有相同项连接成链表,上图中用蓝色连线表示。

为了快速访问树中的相同项,还需要维护一个连接具有相同项的节点的指针列表(headTable),每个列表元素包括:数据项、该项的全局最小支持度、指向FP树中该项链表的表头的指针。
  在这里插入图片描述

构建FP树

现在有如下数据:

在这里插入图片描述

FP-growth算法需要对原始训练集扫描两遍以构建FP树。

第一次扫描,过滤掉所有不满足最小支持度的项;对于满足最小支持度的项,按照全局最小支持度排序,在此基础上,为了处理方便,也可以按照项的关键字再次排序。
在这里插入图片描述

第二次扫描,构造FP树。

参与扫描的是过滤后的数据,如果某个数据项是第一次遇到,则创建该节点,并在headTable中添加一个指向该节点的指针;否则按路径找到该项对应的节点,修改节点信息。具体过程如下所示:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
 从上面可以看出,headTable并不是随着FPTree一起创建,而是在第一次扫描时就已经创建完毕,在创建FPTree时只需要将指针指向相应节点即可。从事务004开始,需要创建节点间的连接,使不同路径上的相同项连接成链表。

实现代码

def loadSimpDat():simpDat = [['r', 'z', 'h', 'j', 'p'],['z', 'y', 'x', 'w', 'v', 'u', 't', 's'],['z'],['r', 'x', 'n', 'o', 's'],['y', 'r', 'x', 'z', 'q', 't', 'p'],['y', 'z', 'x', 'e', 'q', 's', 't', 'm']]return simpDatdef createInitSet(dataSet):retDict = {}for trans in dataSet:fset = frozenset(trans)retDict.setdefault(fset, 0)retDict[fset] += 1return retDictclass treeNode:def __init__(self, nameValue, numOccur, parentNode):self.name = nameValueself.count = numOccurself.nodeLink = Noneself.parent = parentNodeself.children = {}def inc(self, numOccur):self.count += numOccurdef disp(self, ind=1):print('   ' * ind, self.name, ' ', self.count)for child in self.children.values():child.disp(ind + 1)def createTree(dataSet, minSup=1):headerTable = {}#此一次遍历数据集, 记录每个数据项的支持度for trans in dataSet:for item in trans:headerTable[item] = headerTable.get(item, 0) + 1#根据最小支持度过滤lessThanMinsup = list(filter(lambda k:headerTable[k] < minSup, headerTable.keys()))for k in lessThanMinsup: del(headerTable[k])freqItemSet = set(headerTable.keys())#如果所有数据都不满足最小支持度,返回None, Noneif len(freqItemSet) == 0:return None, Nonefor k in headerTable:headerTable[k] = [headerTable[k], None]retTree = treeNode('φ', 1, None)#第二次遍历数据集,构建fp-treefor tranSet, count in dataSet.items():#根据最小支持度处理一条训练样本,key:样本中的一个样例,value:该样例的的全局支持度localD = {}for item in tranSet:if item in freqItemSet:localD[item] = headerTable[item][0]if len(localD) > 0:#根据全局频繁项对每个事务中的数据进行排序,等价于 order by p[1] desc, p[0] descorderedItems = [v[0] for v in sorted(localD.items(), key=lambda p: (p[1],p[0]), reverse=True)]updateTree(orderedItems, retTree, headerTable, count)return retTree, headerTabledef updateTree(items, inTree, headerTable, count):if items[0] in inTree.children:  # check if orderedItems[0] in retTree.childreninTree.children[items[0]].inc(count)  # incrament countelse:  # add items[0] to inTree.childreninTree.children[items[0]] = treeNode(items[0], count, inTree)if headerTable[items[0]][1] == None:  # update header tableheaderTable[items[0]][1] = inTree.children[items[0]]else:updateHeader(headerTable[items[0]][1], inTree.children[items[0]])if len(items) > 1:  # call updateTree() with remaining ordered itemsupdateTree(items[1:], inTree.children[items[0]], headerTable, count)def updateHeader(nodeToTest, targetNode):  # this version does not use recursionwhile (nodeToTest.nodeLink != None):  # Do not use recursion to traverse a linked list!nodeToTest = nodeToTest.nodeLinknodeToTest.nodeLink = targetNodesimpDat = loadSimpDat()
dictDat = createInitSet(simpDat)
myFPTree,myheader = createTree(dictDat, 3)
myFPTree.disp()

上面的代码在第一次扫描后并没有将每条训练数据过滤后的项排序,而是将排序放在了第二次扫描时,这可以简化代码的复杂度。

控制台信息:

在这里插入图片描述

建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/66791.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Kafka基本概念

文章目录 概要整体架构broker和集群ProducerConsumer和消费者组小结 概要 Kafka是最初由Linkedin公司开发&#xff0c;是一个分布式、分区的、多副本的、多生产者、多订阅者&#xff0c;基于 zookeeper协调的分布式日志系统&#xff08;也可以当做MQ系统&#xff09;&#xff…

一文解析超标量处理器

一、引言 处理器&#xff08;central process unit,简称CPU&#xff09;是手机的核心部件&#xff0c;其主要功能是取指令并译码执行。CPU主要包括控制器和运算器两个部件&#xff0c;它对在手机中的所有硬件资源&#xff08;如存储器&#xff0c;输入输出单元&#xff09;进行…

设计师常用的UI设计软件推荐

如今&#xff0c;随着互联网时代设计岗位的演变&#xff0c;近年来出现了一位新兴而受欢迎的专业UI设计师。对于许多对UI设计感兴趣或刚刚接触UI设计的初学者来说&#xff0c;他们不禁想知道&#xff0c;成为一名优秀的UI设计师需要掌握哪些UI软件&#xff1f;今天&#xff0c;…

Docker自动化部署安装(十)之安装SonarQube

这里选择的是&#xff1a; sonarqube:9.1.0-community (推荐使用) postgres:9.6.23 数据库(sonarqube7.9及以后便不再支持mysql&#xff0c;版本太低的话里面的一些插件会下载不成功的) 1、docker-sonarqube.yml文件 version: 3 services:sonarqube:container_name: sonar…

基于dbn+svr的交通流量预测,dbn详细原理

目录 背影 DBN神经网络的原理 DBN神经网络的定义 受限玻尔兹曼机(RBM) DBN+SVR的交通流量预测 基本结构 主要参数 数据 MATALB代码 结果图 展望 背影 DBN是一种深度学习神经网络,拥有提取特征,非监督学习的能力,是一种非常好的分类算法,本文将DBN+SVR用于交通流量预测…

使用Java根据表名导出与导入Sql

前言 很粗糙啊&#xff0c;有很多可以优化的地方&#xff0c;而且也不安全&#xff0c;但是临时用还是OK的&#xff0c;我这个是公司里面的单机软件&#xff0c;不联网。 嗨&#xff01;我是一名社交媒体增长黑客&#xff0c;很高兴能帮助您优化和丰富关于批量作业导出和导入…

LeetCode 31题:下一个排列

目录 题目 思路 代码 题目 整数数组的一个 排列 就是将其所有成员以序列或线性顺序排列。 例如&#xff0c;arr [1,2,3] &#xff0c;以下这些都可以视作 arr 的排列&#xff1a;[1,2,3]、[1,3,2]、[3,1,2]、[2,3,1] 。 整数数组的 下一个排列 是指其整数的下一个字典序…

12 注册登录

12 注册登录 整体概述 使用数据库连接池实现服务器访问数据库的功能&#xff0c;使用POST请求完成注册和登录的校验工作。 本文内容 介绍同步实现注册登录功能&#xff0c;具体涉及到流程图、载入数据库表、提取用户名和密码、注册登录流程与页面跳转的代码实现。 流程图&a…

手机的发展历史

目录 一.人类的通信方式变化 二.手机对人类通信的影响 三.手机的发展过程 四.手机对现代人的影响 一.人类的通信方式变化 人类通信方式的变化是一个非常广泛和复杂的话题&#xff0c;随着技术的进步和社会的发展&#xff0c;人类通信方式发生了许多重大的变化。下面是一些主…

掌握Python的X篇_32_使用python编辑pdf文件_pdfrw

本篇介绍利用python操作pdf文件&#xff0c;我们平时也会有合并和拆分pdf的需求&#xff0c;此时我们就可以使用本节内容。 文章目录 1. pdfrw的安装2. 切分pdf文件3. pdfrw官网及实现一版四面的实例 1. pdfrw的安装 pip install pdfrw官网地址&#xff1a;https://github.co…

Amazon EMR Hudi 性能调优——Clustering

随着数据体量的日益增长&#xff0c;人们对 Hudi 的查询性能也提出更多要求&#xff0c;除了 Parquet 存储格式本来的性能优势之外&#xff0c;还希望 Hudi 能够提供更多的性能优化的技术途径&#xff0c;尤其当对 Hudi 表进行高并发的写入&#xff0c;产生了大量的小文件之后&…

痞子衡嵌入式:AppCodeHub - 一站网罗恩智浦MCU应用程序

近日&#xff0c;恩智浦官方隆重上线了应用程序代码中心(Application Code Hub&#xff0c;简称 ACH)&#xff0c;这是恩智浦 MCUXpresso 软件生态的一个重要组成部分。痞子衡之所以要如此激动地告诉大家这个好消息&#xff0c;是因为 ACH 并不是又一个恩智浦官方 github proje…