代码随想录算法训练营DAY48|C++动态规划Part9|121.买卖股票的最佳时机、122.买卖股票的最佳时机II、123.买卖股票的最佳时机III

文章目录

  • 121.买卖股票的最佳时机
    • 思路
    • CPP代码
  • 122.买卖股票的最佳时机II
    • 思路
    • CPP代码
  • 123.买卖股票的最佳时机III
    • 思路
    • CPP代码

121.买卖股票的最佳时机

力扣题目链接

文章讲解:121.买卖股票的最佳时机

视频讲解:动态规划之 LeetCode:121.买卖股票的最佳时机1

状态:非常与众不同的动态规划题,也是一类典型的动态规划题。

思路

  • dp数组的含义

dp[i][0]表示第i天持有这支股票能获得的最大现金,dp[i][1]表示第i天不持有这支股票能获得的最大现金。

最终要求的结果就是最后一天的状态:max(dp[len-1][0], dp[len-1][i])

并且应该注意的是,我们这里是第i天持有这支股票,并不代表我在第i天才买,我有可能之前就买了;同理,我们第i天不持有这支股票并不代表我第i天才卖。并且我们在最后拿结果的时候,肯定是dp[len(prices)][1],因为无论怎么着,我们不持有这支股票获利肯定都比在最后一天还持有股票来的高

  • 递推公式

    • 先讨论一下dp[i][0]

      • 首先确定do[i][0]表示第i天持有这支股票,那么dp[i-1][0]呢?其实他们两个是相等的, 因为我们前后两天都是持有股票;

        再一个,我们我们是在第i天才买入这支股票的话,那么也就是说我在i-1天是不持有这支股票的,并且在第i天花了买股票的钱所以直接dp[i][0]直接就是-price[i]

        综上所述:dp[i][0]=max(dp[i-1][0], -prices[i])

    • 再就是dp[i][1]

      • 同理,我们的前一天也可以是不持有这支股票的状态dp[i-1][1],此时的话和dp[i][1]他们两个相等
      • 那么如果,我们在第i天把这支股票给卖了变成了dp[i][1],那么此时我们现在手里的钱就是前一天持有股票的最大金额再加上今天卖股票赚的钱dp[i-1][0]+prices[i]
      • 综上所述:dp[i][1]=max(dp[i-1][1], dp[i-1][0]+prices[i])
  • dp数组的初始化

从公式可以看出来,我们的dp[0][0]dp[0][1]是我们整个递推公式的基础,那么dp[0][0]=-prices[0]dp[0][1]=0;然后其他的均初始化为多少其实都无所谓。

  • 遍历顺序

没讲究,直接从前向后遍历

  • 举例推导dp数组

以示例1,输入:[7,1,5,3,6,4]为例,dp数组状态如下:

20210224225642465

CPP代码

我们从递推公式可以看出:

dp[i][0] = max(dp[i - 1][0], -prices[i]);
dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);

dp[i]只与dp[i-1]的状态有关,所以完全可以用滚动数组,也就是只需要记录 当前天的dp状态和前一天的dp状态就可以了

class Solution {
public:int maxProfit(vector<int>& prices) {int len = prices.size();vector<vector<int>> dp(2, vector<int>(2)); // 注意这里只开辟了一个2 * 2大小的二维数组dp[0][0] -= prices[0];dp[0][1] = 0;for (int i = 1; i < len; i++) {dp[i % 2][0] = max(dp[(i - 1) % 2][0], -prices[i]);dp[i % 2][1] = max(dp[(i - 1) % 2][1], prices[i] + dp[(i - 1) % 2][0]);}return dp[(len - 1) % 2][1];}
};

122.买卖股票的最佳时机II

力扣题目链接

文章链接:122.买卖股票的最佳时机II

视频链接:动态规划,股票问题第二弹 | LeetCode:122.买卖股票的最佳时机II

状态:可以实现多次买卖,这个时候最主要的不同体现在递推公式上。如果会121.买卖股票的最佳时机,本题就比较简单

思路

本题唯一的区别就是本题的股票可以买卖多次(只有一只股票,所以再次购买前要出售掉之前的股票)

所以本题和121.买卖股票的最佳时机唯一的区别就在于递推公式,其他的地方都是一样的。首先,我们重申一下dp数组的含义:dp[i][0] 表示第i天持有股票所得现金;dp[i][1] 表示第i天不持有股票所得最多现金

  • 递推公式

在121.买卖股票的最佳时机中,由于股票全程只能买卖一次,所以如果买入股票,那么第i天持有股票即dp[i][0]一定就是 -prices[i]

本题,因为一只股票可以买卖多次,所以当第i天买入股票的时候,所持有的现金可能有之前买卖过的利润


接下来开始讨论核心代码:

那么如果第i天持有股票,如果是在第i天买入的,那么所得现金就是昨天不持有股票的现金再减去今天股票的价格,所以dp[i - 1][1] - prices[i]

如果第i天不持有股票即dp[i][1]

  1. i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]
  2. i天卖出股票,所得现金就是按照今天股票价格卖出后所得现金即:prices[i] + dp[i - 1][0]

综上所述:递推公式为

            dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]); // 注意这里是和121. 买卖股票的最佳时机唯一不同的地方。dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i]);

CPP代码

这里仅给出滚动数组版本的代码( 只记录当前天的dp状态和前一天的dp状态

class Solution {
public:int maxProfit(vector<int>& prices) {int len = prices.size();vector<vector<int>> dp(2, vector<int>(2)); // 注意这里只开辟了一个2 * 2大小的二维数组dp[0][0] -= prices[0];dp[0][1] = 0;for (int i = 1; i < len; i++) {dp[i % 2][0] = max(dp[(i - 1) % 2][0], dp[(i - 1) % 2][1] - prices[i]);dp[i % 2][1] = max(dp[(i - 1) % 2][1], prices[i] + dp[(i - 1) % 2][0]);}return dp[(len - 1) % 2][1];}
};

123.买卖股票的最佳时机III

力扣题目链接

文章链接:123.买卖股票的最佳时机III

视频链接:动态规划,股票至多买卖两次,怎么求? | LeetCode:123.买卖股票最佳时机III

状态:看到困难吓我一跳

本题有又变套路了,题目中谈到,至多买卖两次,这就意味着可以买卖一次、可以买卖两次、也可以不买卖。

但其实最本质的无非就是要设置的状态多多了,之前我们也就两个状态,持有和不持有

思路

  • 确定dp数组以及下标的含义

现在,我们状态比之前多多了:

  1. 没有操作 (其实我们也可以不设置这个状态)
  2. 第一次持有股票
  3. 第一次不持有股票
  4. 第二次持有股票
  5. 第二次不持有股票

dp[i][j]i表示第i天,j[0 - 4] 五个状态,dp[i][j]表示第i天状态j所剩最大现金。

  • 确定递推公式
  1. 我们确定dp[i][1]的状态
    在这里插入图片描述

我们应该从两种情况里选择最大的,即dp[i][1]=max(dp[i-1][0]=prices[i], dp[i-1][1])

  1. 确定dp[i][2]的状态

在这里插入图片描述

同理dp[i][2]=max(dp[i-1][1] + prices[i], do[i-1][2])

3.确定dp[i][3]的状态

在这里插入图片描述

同理dp[i][3]=max(dp[i-1][2] + prices[i], do[i-1][3])

  1. 确定dp[i][4]的状态

在这里插入图片描述

同理dp[i][4]=max(dp[i-1][3] + prices[i], do[i-1][4])

  • dp数组的初始化

首先,我们只用初始化第0天,因为从此之后的n天都是由前一天初始化来的。

然后,dp[0][0]显然是等于0的,

每次的买入操作应当初始化为-prices[0],因为买入我们本次的钱肯定就是负数了,至于第二次买入可以理解为我们第零天先买入,再卖出,然后再买入

卖出操作应该初始化为0,因为就算再同一天买入卖出收获的钱肯定是0

vector<vector<int>> dp(prices.size(), vector<int>(5, 0));
dp[0][1] = -prices[0];
dp[0][3] = -prices[0];
  • 确定遍历顺序

跟之前的一样,从左到右即可

  • 举例推导dp数组

以输入[1,2,3,4,5]为例

20201228181724295-20230310134201291

我们最终的最大利润肯定是出现在最后一天的第二次dp[4][4]

CPP代码

class Solution {
public:int maxProfit(vector<int>& prices) {if (prices.size() == 0) return 0;vector<vector<int>> dp(prices.size(), vector<int>(5, 0));dp[0][1] = -prices[0];dp[0][3] = -prices[0];for (int i = 1; i < prices.size(); i++) {dp[i][0] = dp[i - 1][0];dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i]);dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] + prices[i]);dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);}return dp[prices.size() - 1][4];}
};//空间优化(滚动数组)
class Solution {
public:int maxProfit(vector<int>& prices) {if (prices.size() == 0) return 0;vector<int> dp(5, 0);dp[1] = -prices[0];dp[3] = -prices[0];for (int i = 1; i < prices.size(); i++) {dp[1] = max(dp[1], dp[0] - prices[i]);dp[2] = max(dp[2], dp[1] + prices[i]);dp[3] = max(dp[3], dp[2] - prices[i]);dp[4] = max(dp[4], dp[3] + prices[i]);}return dp[4];}
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/669611.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Spring IoC注解式开发无敌详细(细节丰富)

1. Spring IoC注解式开发无敌详细&#xff08;细节丰富&#xff09; 文章目录 1. Spring IoC注解式开发无敌详细&#xff08;细节丰富&#xff09;每博一文案2. 注解回顾3. Spring 声明Bean的注解3.1 Spring注解的使用3.1.1 特别的&#xff1a;如果要扫描的是多个包3.1.2 Sprin…

面向新手在无人机竞速场景下的飞行辅助系统——浙大 FAST-Lab 高飞团队 ICRA 论文三项 Best Paper 入围

恭喜浙江大学 FAST-Lab 钟宇航同学的论文 A Trajectory-based Flight Assistive System for Novice Pilots in Drone Racing Scenario 顺利发表 ICRA 2024&#xff0c;并同时入选三项 Finalist&#xff1a; the IEEE ICRA Best Conference Paper Awardthe IEEE ICRA Best Pape…

滑动验证码登陆测试编程示例

一、背景及原理 处理登录时的滑动验证码有两个难点&#xff0c;第一个是找到滑块需要移动的距离&#xff0c;第二个是模拟人手工拖动的轨迹。模拟轨迹在要求不是很严的情况下可以用先加速再减速拖动的方法&#xff0c;即路程的前半段加速度为正值&#xff0c;后半段为负值去模…

二氧化碳加氢制烯烃具有经济、环境、社会效应 行业发展意义重大

二氧化碳加氢制烯烃具有经济、环境、社会效应 行业发展意义重大 二氧化碳加氢制烯烃&#xff0c;是以二氧化碳、氢气为原料&#xff0c;在一定温度与压力条件下以及催化剂作用下&#xff0c;反应制备烯烃的过程。 全球每年二氧化碳排放量大&#xff0c;导致气候变暖。在此背景下…

【Unity动画系统】详解Root Motion动画在Unity中的应用(二)

Root Motion遇到Blend Tree 如果Root Motion动画片段的速度是1.8&#xff0c;那么阈值就要设置为1.8&#xff0c;那么在代码中的参数就可以直接反映出Root Motion的最终移动速度。 Compute Thresholds&#xff1a;根据Root Motion中某些数值自动计算这里的阈值。 Velocity X/…

leetCode74. 搜索二维矩阵

leetCode74. 搜索二维矩阵 二分法模板&#xff1a;见到背过就行 // 区间[L,R]被划分为[L,mid]和[mid 1, R]时使用这个模板 int bsearch_1(int l, int r){while(l < r){int mid l r >> 1;if(check(mid)) r mid; //check()判断mid是否满足性质else l mid 1;}retu…

来一篇错题集(虽然简单吧)

一.Assembly via Remainders #include<bits/stdc.h> using namespace std; typedef long long ll; int a[2000]; int b[2000]; int main(){int t;cin>>t;while(t--){int n;cin>>n;for(int i1;i<n-1;i){cin>>b[i];}int x1000000000;//使用1000000000…

pyqt标签常用qss格式设置

pyqt标签常用qss格式设置 QSS介绍标签常用的QSS设置效果代码 QSS介绍 Qt Style Sheets (QSS) 是 Qt 框架中用于定制应用程序界面样式的一种语言。它类似于网页开发中的 CSS&#xff08;Cascading Style Sheets&#xff09;&#xff0c;但专门为 Qt 应用程序设计。使用 QSS&…

计算机嵌入式实习一定要掌握这些知识

在进行计算机嵌入式实习时&#xff0c;掌握以下这些知识是至关重要的&#xff01; 当你踏入嵌入式领域的大门&#xff0c;首先需要扎实掌握嵌入式系统基础&#xff0c;这是整个嵌入式开发的根基。同时&#xff0c;C 语言和 C编程也是必不可少的技能。C 语言以其高效的性能和与…

MFC实现点击列表头进行排序

MFC实现点击列表头排序 1、添加消息处理函数 在列表窗口右键&#xff0c;类向导。选择 IDC_LIST1&#xff08;我的列表控件的ID&#xff09;&#xff0c;消息选择LVN_COLUMNCLICK。 2、消息映射如下 然后会在 cpp 文件中生成以下函数 void CFLashSearchDlg::OnLvnColumnclic…

五招教你学会保护网站安全

保护网站安全是一个多层面的过程&#xff0c;涉及到预防、监测和应对策略。以下是五招教你学会保护网站安全&#xff1a; 一、使用强密码策略&#xff1a; 确保所有管理员和用户账户使用复杂密码&#xff0c;包含大小写字母、数字和特殊字符。定期更换密码&#xff0c;建议每…

利用AI大模型和Echarts 绘制知识图谱,实现文本信息提取和图数据库操作

引言 随着信息时代的到来&#xff0c;海量的文本数据成为了我们获取知识的重要来源。然而&#xff0c;如何从这些文本数据中提取出有用的信息&#xff0c;并将其以可视化的方式展示出来&#xff0c;一直是一个具有挑战性的问题。近年来&#xff0c;随着人工智能技术的发展&…