数据分析从入门到精通 2.pandas修真之前戏基础

从爱上自己那天起,人生才真正开始

                                                        —— 24.5.6

为什么学习pandas

        numpy已经可以帮助我们进行数据的处理了,那么学习pandas的目的是什么呢?
        numpy能够帮助我们处理的是数值型的数据,当然在数据分析中除了数值型的数据还有好多其他类型的数据(字符串时间序列),那么pandas就可以帮我们很好的处理除了数值型的其他数据!

什么是pandas?

首先先来认识pandas中的两个常用的类
        Series
        DataFrame

Series类

Series是一种类似与一维数组的对象,由下面两个部分组成:

        values:一组数据(ndarray类型)
        index:相关的数据索引标签

Series的创建

        由列表创建

from pandas import Series
# Series的创建
# 由列表创建
s1 = Series(data=[1,2,3,"four"])
print(s1)
print("——————————————————————————————————————")

        由numpy数组创建

# 由numpy数组创建
import numpy as np
s2 = Series(data=np.random.randint(0,100,size=(3)))
print(s2)
print("——————————————————————————————————————")

index参数用来指定显示索引的 默认的0,1,2,3为隐式索引

# index参数用来指定显示索引的 默认的0,1,2,3为隐式索引
s3 = Series(data=[1,2,3,"four"],index=['a','b','c','d'])
print(s3)
print("——————————————————————————————————————")


        由字典创建

        为什么需要有显示索引?

                显示索引可以增强series的可读性

# 由字典创建
dic = {'语文':99,'数学':100,'英语':100
}
s4 = Series(data=dic)
print(s4)
print("——————————————————————————————————————")

Seires的索引和切片

dic = {'语文':99,'数学':100,'英语':100
}
s4 = Series(data=dic)
print(s4)
print("——————————————————————————————————————")# 索引
print(s4[0])
print(s4.语文)
# 切片
print(s4[0:2])

Series的常用属性

        shape:返回数组的形状

        size:返回数组元素的个数

        index:返回数组的索引

        values:返回存储的元素值

# shape:返回数组的形状   ize:返回数组元素的个数   index:返回数组的索引   values:返回存储的元素值
s = Series(data=[1,1,4,"一切都会好的","我一直相信"])
print(f"s.shape={s.shape}")
print(f"s.size={s.size}")
print(f"s.index={s.index}")
print(f"s.values={s.values}")
print(f"s.dtype={s.dtype}")

wAAACH5BAEKAAAALAAAAAABAAEAAAICRAEAOw==

​Series的常用方法

        head(),tail()

# 导包
import numpy as np
from pandas import Series# 创建Series数组对象
s = Series(data=np.random.randint(60,100,size=(10,)))# head() 显示前n个数组元素,n默认为5
print(f"s={s}")
print(f"s.head()={s.head()}") # 显示数组中前n个对象,默认n是5
print("s.head(2)={s.head(2)}")
print("——————————————————————————————————————")# tail() 显示后n个数组元素,n默认为5
print(f"s={s}")
print(f"s.tail()={s.tail()}") # 显示数组中后n个对象,默认n是5
print("s.tail(2)={s.tail(2)}")
print("——————————————————————————————————————")

        unique()

# 导包
import numpy as np
from pandas import Series# 创建Series数组对象
s = Series(data=np.random.randint(60,100,size=(10,)))# unique()去重,去除重复的数据
print(f"s={s}")
print(f"s.unique()={s.unique()}")
print("——————————————————————————————————————")

 

        isnull(),notnull()

# 导包
import numpy as np
from pandas import Series# 创建Series数组对象
s = Series(data=np.random.randint(60,100,size=(10,)))
# isnull 用于判断每个元素是否为空 如果为空返回true,否则返回false
print(f"s.isnull()={s.isnull()}")
print("——————————————————————————————————————")# notnull 用于判断每个元素是否不为空 如果不为空返回true,否则返回false
print(f"s.notnull()={s.notnull()}")
print("——————————————————————————————————————")

        add()加法、 sub()减法、 mul()乘法、 div()除法

Seriese的算术法则

        —— 法则:索引一致的元素进行算术运算否则补空

DataFrame类

DataFrame是一个【表格型】的数据结构。DataFrame由按一定顺序排列的多列数据组成。设计初衷是将Series的使用场景从一维拓展到多维。DataFrame既有行索引,也有列索引。
        行索引:index
        列索引:columns
        索引所对的值:values

DataFrame的创建

        ndarray创建

# 导包
from pandas import DataFrame
import numpy as np# DataFrame的创建
# ndarray创建
df1 = DataFrame(data=[[1,2,3],[4,5,6]])
print(df1)df2 = DataFrame(data=np.random.randint(0,100,size=(6,4)))
print(df2)

        字典创建

# DataFrame的创建
# 字典创建
dic = {'name':["张三","李四","王老五"],"salary":[1000,2000,3000]
}df3 = DataFrame(data=dic)
print(df3)

DataFrame的属性

        values: 二维数组存储的数据

        columns:返回列索引

        index:返回行索引

        shape:返回形状(几行几列)

# 导包
from pandas import DataFrame
import numpy as np# DataFrame的创建
# ndarray创建
df = DataFrame(data=np.random.randint(0,100,size=(6,4)))
print(df)
print(df.values)
print(df.index)
print(df.columns)
print(df.shape)
print(df.dtypes)

练习

根据以下考试成绩表,创建一个DataFrame,命名为df:
                张三 李四

        语文 150     0
        数学 150     0
        英语 150     0
        理综 300     0

# 导包
from pandas import DataFrame
import numpy as npdic = {"张三":[150,150,150,300],"李四":[0,0,0,0]
}
df = DataFrame(data=dic,index=["语文","数学","英语","理综"])
print(df)

DataFrame索引操作

        对行进行索引,取列

# 导包
from pandas import DataFrame
import numpy as np# DataFrame索引操作
# 创建数据源
# 行索引是显示的,列索引是隐式的 列索引是显示的:a、b、c、d
df = DataFrame(data=np.random.randint(60,100,size=(8,4)),columns=['a','b','c','d'])print("取单列:")
# 对行进行索引
# 取单列,如果df有显示的索引,通过索引机制取行或者列的时候只能使用显示索引
print(df['a'])
print("——————————————————————————————————————")# 用隐式索引取单列
print("隐式索引取单列")
print(df.iloc[0])
print("——————————————————————————————————————")# 取多列 需要两个中括号
print("取多列:")
print(df[['a','b','c']])
print("——————————————————————————————————————")# 通过隐式索引取列
print("隐式索引取列:")
print(df.iloc[0])
print("——————————————————————————————————————")

        对列进行索引,取行

# 导包
from pandas import DataFrame
import numpy as np# DataFrame索引操作
# 创建数据源
# 行索引是显示的,列索引是隐式的 列索引是显示的:a、b、c、d
df = DataFrame(data=np.random.randint(60,100,size=(8,4)),columns=['a','b','c','d'])# 对列进行索引
# 隐式索引取单行
print("隐式索引取单行:")
print(df.iloc[0])
print("——————————————————————————————————————")# 取多行 需要两个中括号
# 隐式索引取多行
print("隐式索引取多行:")
print(df.iloc[[0,3,5]])
print("——————————————————————————————————————")# 显示索引取单行
print("显式索引取单行:")
print(df.loc[0])# 显示索引取多行
# 由于数组没有显示索引,所以iloc和loc都可以求隐式索引,如果数组中有显示索引,loc后面只能跟显示索引不能跟隐式索引
print("显式索引取多行:")
print(df.iloc[[0,3,5]])
print("——————————————————————————————————————")

      对元素进行索引

# 导包
from pandas import DataFrame
import numpy as np# DataFrame索引操作
# 创建数据源
# 行索引是显示的,列索引是隐式的 列索引是显示的:a、b、c、d
df = DataFrame(data=np.random.randint(60,100,size=(8,4)),columns=['a','b','c','d'])# 对元素进行索引
print("对元素进行索引")
print("取单个元素")
print(df.iloc[0,2])
print(df.loc[0,'a'])
print("——————————————————————————————————————")print("取多个元素")
print(df.iloc[[1, 3, 5], 2])

—— iloc:

        通过隐式索引取行

—— loc:

        通过显示索引取行

总结

df索引和切片操作

        索引:
                df[col]:取列
                df.loc[index]:取行
                df.iloc[index,col]:取元素

        切片:
                df[index1:index3]:切行

                df.iloc[:,col1:col3]:切列

DataFrame的运算

        —— 同Series运算一致

        —— 法则:索引一致的元素进行算术运算否则补空

        add()加法、 sub()减法、 mul()乘法、 div()除法

练习

1.假设ddd是期中考试成绩,ddd2是期末考试成绩,请自由创建ddd2,并将其与ddd相加,求期中期末平均值。
2.假设张三期中考试数学被发现作弊,要记为0分,如何实现?
3.李四因为举报张三作弊立功,期中考试所有科目加100分,如何实现?
4.后来老师发现有一道题出错了,为了安抚学生情绪,给每位学生每个科目都加10分,如何实现?

# 导包
from pandas import DataFramedic = {"张三":[150,150,150,150],"李四":[0,0,0,0]
}# 根据字典创建数组
df=DataFrame(data=dic,index=["语文","数学","英语","理综"])# 期中考试
MidTest = df# 期末考试
LastTest = df# 期中+期末的平均值
print((MidTest+LastTest)/2)# 张三期中作弊了,将数学分数改为0
MidTest.loc["数学","张三"] = 0
print(MidTest)# 李四举报张三,将李四所有成绩+100
MidTest["李四"] += 100
print(MidTest)# 后来老师发现有一道题出错了,为了安抚学生情绪,给每位学生每个科目都加10分
MidTest += 10
print(MidTest)

时间数据类型的转换

pd.to_datetime(col)将某一列

# 导包
from pandas import DataFrame
import pandas as pddic = {'time':["2010-10-10","2011-11-20","2020-1-10"],"temp":[33,31,30]
}df = DataFrame(data=dic)
print(df)# 查看time列的类型
print(df["time"].dtype)
print("————————————————————————————————————")
# 将time列的数据类型转换成时间序列类型
df['time'] = pd.to_datetime(df["time"])
print(df)
print(df['time'].dtype)
print("————————————————————————————————————")

设置为行索引

df.set_index(

# 导包
from pandas import DataFrame
import pandas as pddic = {'time':["2010-10-10","2011-11-20","2020-1-10"],"temp":[33,31,30]
}df = DataFrame(data=dic)
print(df)# 将time列作为原数据的行索引,替换10,1,2
df.set_index('time', inplace=True)
print(df)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/670583.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JAVA学习14——异常

目录 异常: 1.异常基本介绍: 2.异常体系图: 3.五大运行时异常: (1)NullPointerException空指针异常: (2)AirthmetiException数字运算异常: &#xff0…

C++学习笔记——对仿函数的理解

文章目录 思维导图仿函数出现的逻辑仿函数使用上的巧妙 仿函数的本质仿函数的优势仿函数语法的巧妙 思维导图 仿函数出现的逻辑 我们在学习stack时会遇到一些新的问题,这些问题需要我们使用非类型模板参数去解决,即我们需要在设计类时需要有一个途径去快…

【c1】数据类型,运算符/循环,数组/指针,结构体,main参数,static/extern,typedef

文章目录 1.数据类型:编译器(compiler)与解释器(interpreter),中文里的汉字和标点符号是两个字节,不能算一个字符(单引号)2.运算符/循环:sizeof/size_t3.数组…

Pycharm debug 运行报错 (RuntimeError: cannot release un-acquired lock)

问题描述: 最近再跑一个 flask应用,Pycharm 运行没问题,debug断点启动时报错 如下: 解决方案: 在环境变量中增加 GEVENT_SUPPORTTrue 启动成功!

广义近似消息传递(GAMP-MMSE-SBL)

1、为了解决什么问题 [1]Rangan, Sundeep. "Generalized approximate message passing for estimation with random linear mixing." 2011 IEEE International Symposium on Information Theory Proceedings. IEEE, 2011. [2]Andersen, Michael Riis. "Sparse…

【3D基础】坐标转换——地理坐标投影到平面

汤国安GIS原理第二章重点 1.常见投影方式 https://download.csdn.net/blog/column/9283203/83387473 Web Mercator投影(Web Mercator Projection): 优点: 在 Web 地图中广泛使用,易于显示并与在线地图服务集成。在较…

RS2057XH功能和参数介绍及规格书

RS2057XH 是一款由润石科技(Runic Semiconductor)生产的模拟开关芯片,其主要功能和参数如下: 产品特点: 低电压操作:支持低至1.8V的工作电压,适用于低功耗应用。 高带宽:具有300MHz的…

linux学习:线程池

目录 原理 初始线程池 运行中的线程池 相关结构体 api 线程池初始化 投送任务 增加活跃线程 删除活跃线程 销毁线程池 例子 thread_pool.h thread_pool.c test.c 测试程序 原理 一个进程中的线程就好比是一家公司里的员工,员工的数目应该根据公司的…

展厅设计中的时光隧道装置是什么?有何独特应用优势?

在当今多媒体互动技术蓬勃发展的时代,各类创新的内容呈现手段层出不穷。其中,时光隧道互动装置以其独特的方式,极大地丰富了内容的表达并提升了用户体验,它能够将参观者引领至一个多维度的感官世界,让其身临其境地感受…

超详细——集成学习——Adaboost——笔记

资料参考 1.【集成学习】boosting与bagging_哔哩哔哩_bilibili 集成学习——boosting与bagging 强学习器:效果好,模型复杂 弱学习器:效果不是很好,模型简单 优点 集成学习通过将多个学习器进行结合,常可获得比单一…

前端基础学习html(1)

1.标题标签.h1,h2...h6 2.段落标签p 换行标签br 3.加粗strong(b) /倾斜em(i) /删除 del(s) /下划线ins(u) 4.盒子:div //一行一个 span//一行多个 5.img :src alt title width height border 图片src引用:相对路径 上级/同级/中级 绝对路径&#xff…

Linux用户日志审计系统

标题日期版本说明作者 用户日志审计系统 2024.05.06v.0.0.1权限lgb 测试环境:CentOS Stream 9 测试过程: 测试开始前,首先我们先建立一个用户。 将文件备份。 我们通过vim编辑器,打开 /etc/profile 文件进行编辑。 将提前编辑好…