大模型_DISC-MedLLM基于Baichuan-13B-Base医疗健康对话

文章目录

  • DISC-MedLLM
    • 介绍
    • 概述
    • 数据集
    • 部署
    • 推理流程


DISC-MedLLM

介绍

DISC-MedLLM 是一个专门针对医疗健康对话式场景而设计的医疗领域大模型,由复旦大学数据智能与社会计算实验室 (Fudan-DISC) 开发并开源。

该项目包含下列开源资源:

DISC-Med-SFT 数据集 (不包括行为偏好训练数据)
DISC-MedLLM 的模型权重

概述

DISC-MedLLM 是一个专为医疗健康对话场景而打造的领域大模型,它可以满足您的各种医疗保健需求,包括疾病问诊和治疗方案咨询等,为您提供高质量的健康支持服务。

DISC-MedLLM 有效地对齐了医疗场景下的人类偏好,弥合了通用语言模型输出与真实世界医疗对话之间的差距,这一点在实验结果中有所体现。

得益于我们以目标为导向的策略,以及基于真实医患对话数据和知识图谱,引入LLM in the loop 和 Human in the loop的多元数据构造机制,DISC-MedLLM 有以下几个特点:

  • 可靠丰富的专业知识,我们以医学知识图谱作为信息源,通过采样三元组,并使用通用大模型的语言能力进行对话样本的构造。
  • 多轮对话的问询能力,我们以真实咨询对话纪录作为信息源,使用大模型进行对话重建,构建过程中要求模型完全对齐对话中的医学信息。
  • 对齐人类偏好的回复,病人希望在咨询的过程中获得更丰富的支撑信息和背景知识,但人类医生的回答往往简练;我们通过人工筛选,构建符合人类偏好的高质量的小规模行为微调样本,对齐病人的需求。

数据集

为了训练 DISC-MedLLM ,我们构建了一个高质量的数据集,命名为 DISC-Med-SFT,其中包含了超过47万个衍生于现有的医疗数据集重新构建得到的样本。我们采用了目标导向的策略,通过对于精心选择的几个数据源进行重构来得到SFT数据集。这些数据的作用在于帮助模型学习医疗领域知识,将行为模式与人类偏好对齐,并对齐真实世界在线医疗对话的分布情况。

在这里插入图片描述

部署

当前版本的 DISC-MedLLM 是基于Baichuan-13B-Base训练得到的。可以直接从 Hugging Face 上下载我们的模型权重

推理流程

git clone https://github.com/FudanDISC/DISC-MedLLM.gitcd DISC-MedLLMsource activateconda activate DISC-MedLLM

vi tuili.py 编辑待执行程序

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation.utils import GenerationConfig
tokenizer = AutoTokenizer.from_pretrained("/data/sim_chatgpt/DISC-MedLLM", use_fast=False, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("/data/sim_chatgpt/DISC-MedLLM", device_map="auto", torch_dtype=torch.float16, trust_remote_code=True)
model.generation_config = GenerationConfig.from_pretrained("/data/sim_chatgpt/DISC-MedLLM")
messages = []
messages.append({"role": "user", "content": "我感觉自己颈椎非常不舒服,每天睡醒都会头痛"})
response = model.chat(tokenizer, messages)
print(response)

python tuili.py 执行程序

在这里插入图片描述


学习的参考资料:
DISC-MedLLM项目地址
DISC-MedLLM—中文医疗健康助手

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/670815.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

对于子数组问题的动态规划

前言 先讲讲我对于这个问题的理解吧 当谈到解决子数组问题时,动态规划(DP)是一个强大的工具,它在处理各种算法挑战时发挥着重要作用。动态规划是一种思想,它通过将问题分解成更小的子问题并以一种递归的方式解决它们,然后利用这些…

9.媒体元素

视频元素 视频标签基本代码结构&#xff1a; <video src"" controls></video>其中src是视频资源的路径&#xff0c;这个路径有绝对路径和相对路径这里推荐用相对路径。&#xff08;这里可以回顾我html系列的第四篇图片标签&#xff09;&#xff0c;我们…

力扣每日一题111:二叉树的最小深度

题目 简单 给定一个二叉树&#xff0c;找出其最小深度。 最小深度是从根节点到最近叶子节点的最短路径上的节点数量。 说明&#xff1a;叶子节点是指没有子节点的节点。 示例 1&#xff1a; 输入&#xff1a;root [3,9,20,null,null,15,7] 输出&#xff1a;2示例 2&#x…

redis stream 作为消息队列的最详细的命令说明文档

简介 stream 作为消息队列&#xff0c;支持多次消费&#xff0c;重复消费&#xff0c;ack机制&#xff0c;消息异常处理机制。 涉及到以下几个概念&#xff0c;消息流&#xff0c;消费者组&#xff0c;消费者。 涉及到以下命令 # 添加消息到流中 XADD key [NOMKSTREAM] [&…

C++初阶学习第五弹——类与对象(下)——类与对象的收官战

类与对象&#xff08;上&#xff09;&#xff1a;C初阶学习第三弹——类与对象&#xff08;上&#xff09;——初始类与对象-CSDN博客 类与对象&#xff08;中&#xff09;&#xff1a;C初阶学习第四弹——类与对象&#xff08;中&#xff09;——刨析类与对象的核心点-CSDN博…

基于大模型的idea提炼:围绕论文和引用提炼idea之ResearchAgent

前言 对本博客比较熟悉的朋友知道&#xff0c;我司论文项目组正在基于大模型做论文的审稿(含CS英文论文审稿、和金融中文论文审稿)、翻译&#xff0c;且除了审稿翻译之外&#xff0c;我们还将继续做润色/修订、idea提炼(包含论文检索)&#xff0c;是一个大的系统&#xff0c;包…

LangChain 概念篇(喂饭级)

LangChain 介绍 LangChain 是一个用于开发由语言模型驱动的应用程序的框架。 LangChain 框架的设计目标 支持应用程序让其不仅会通过 API 调用语言模型&#xff0c;而且还会数据感知&#xff08;将语言模型连接到其他数据源&#xff09;&#xff0c;Be agentic&#xff08;允…

华为eNSP小型园区网络配置(上)

→跟着大佬学习的b站直通车← 目标1&#xff1a;dhcp分配ip地址 目标2&#xff1a;内网用户访问www.yzy.com sw1 # vlan batch 10 # interface Ethernet0/0/1port link-type accessport default vlan 10 # interface Ethernet0/0/2port link-type trunkport trunk allow-pass…

electron 通信总结

默认开启上下文隔离的情况下 渲染进程调用主进程方法&#xff1a; 主进程 在 main.js 中&#xff0c; 使用 ipcMain.handle&#xff0c;添加要处理的主进程方法 const { ipcMain } require("electron"); 在 electron 中创建 preload.ts 文件&#xff0c;从 ele…

FreeRTOS资源管理

1.以前临界资源的保护方式 有使用过静态局部变量来保护临界资源&#xff0c;也有用队列&#xff0c;信号量&#xff0c;互斥量来保护临界资源。这些都是在多个任务会共同使用临界资源的情况下我们的保护方式。 问题提出&#xff1a;如果有个传感器在读取数据时有严格的时序&a…

奶爸预备 |《伯克毕生发展心理学.从0岁到青少年》 / (美) 劳拉·E. 伯克著——读书笔记

目录 引出第一篇 人的发展理论与研究第1章 历史、理论和研究方法 第二篇 发展的基础第2章 生物基础与环境基础第3章 孕期发育、分娩及新生儿 第三篇 婴儿期和学步期&#xff1a;0~2岁第4章 婴儿期和学步期的身体发育第5章 婴儿期和学步期的认知发展第6章 婴儿期和学步期的情绪与…

【一步一步了解Java系列】:探索Java基本类型转换的秘密

看到这句话的时候证明&#xff1a;此刻你我都在努力~ 加油陌生人~ 个人主页&#xff1a; Gu Gu Study ​​ 专栏&#xff1a;一步一步了解Java 喜欢的一句话&#xff1a; 常常会回顾努力的自己&#xff0c;所以要为自己的努力留下足迹。 如果喜欢能否点个赞支持一下&#…